316 research outputs found

    White Dwarf Cosmochronometry. I. Monte Carlo Simulations of Proper-Motion ̶ and Magnitude-Limited Samples Using Schmidt’s 1/Vmax Estimator

    Get PDF
    Observationally, white dwarf stars are a remarkably homogeneous class with a minimum observed Teff ~4000 K. Theoretically, the physics that determines their cooling timescales is relatively more straightforward than that which determines main-sequence evolutionary timescales. As a result, the white dwarf luminosity function has for the last decade been used as a probe of the age and star formation rate of the Galactic disk, providing an estimated local disk age of ~10 Gyr with estimated total uncertainties of roughly 20%. A long-standing criticism of the technique is that the reality of the reported downturn in the luminosity function (LF) hinges on just a handful of stars and on statistical arguments that fainter (older) objects would have been observed were they present. Indeed, the likely statistical variations of these small-number samples represent one of the primary uncertainties in the derived Galactic age, and the behavior of Schmidt\u27s 1/Vmax estimator in this limit is not well understood. In this work, we explore these uncertainties numerically by means of a Monte Carlo population synthesis code that simulates the kinematics and relative numbers of cooling white dwarfs. The “observationally selected” subsamples are drawn using typical proper motion and V-magnitude limits. The corresponding 1/Vmax LFs are then computed and compared to the input-integrated LFs. The results from our (noise-free) data suggest that (1) Schmidt’s 1/Vmax technique is a reliable and well-behaved estimator of the true space density with typical uncertainties of ~50% for 50 point samples and 25% for 200 point samples; (2) the age uncertainties quoted in previously published observational studies of the LF are consistent with uncertainties in the Monte Carlo results ̶ specifically, there is a ~15% and ≀10% observational uncertainty in the ages inferred from 50 point and 200 point samples, respectively; and (3) the large statistical variations in the bright end of these LFs ̶ even in the large-N limit ̶ preclude using the white dwarf LF to obtain an estimate of the recent star formation rate as a function of time

    The Periodic Signals of Nova V1674 Herculis (2021)

    Get PDF
    We present time-series photometry during the early decline phase of the extremely fast nova V1674 Herculis. The 2021 light curve showed periodic signals at 0.152921(3) days and 501.486(5) s, which we interpret as respectively the orbital and white dwarf spin periods in the underlying binary. We also detected a sideband signal at the difference frequency between these two clocks. During the first 15 days of outburst, the spin period appears to have increased by 0.014(1)%. This increase probably arose from the sudden loss of high-angular-momentum gas ("the nova explosion") from the rotating, magnetic white dwarf. Both periodic signals appeared remarkably early in the outburst, which we attribute to the extreme speed with which the nova evolved (and became transparent to radiation from the inner binary). After that very fast initial period increase of 71 ms, the period subsequently decreased—at 182(18) ms yr−1 in 2021, and 88(18) ms yr−1 in 2022. These rates are ∌100× faster than typically seen in intermediate polars. This could be due to high accretion torques from very high mass-transfer rates, which might be common when low-mass donor stars are strongly irradiated by a nova outburst

    Temporal change in the contribution of immigration to population growth in a wild seabird experiencing rapid population decline

    Get PDF
    The source–sink paradigm predicts that populations in poorer-quality habitats (‘sinks’) persist due to continued immigration from more-productive areas (‘sources’). However, this categorisation of populations assumes that habitat quality is fixed through time. Globally, we are in an era of wide-spread habitat degradation, and consequently there is a pressing need to examine dispersal dynamics in relation to local population change. We used an integrated population model to quantify immigration dynamics in a long-lived colonial seabird, the black-legged kittiwake Rissa tridactyla, that is classified as globally ‘Vulnerable’. We then used a transient life table response experiment to evaluate the contribution of temporal variation in vital rates, immigration rates and population structure to realised population growth. Finally, we used a simulation analysis to examine the importance of immigration to population dynamics. We show that the contribution of immigration changed as the population declined. This study demonstrates that immigration is unlikely to maintain vulnerable sink populations indefinitely, emphasising the need for temporal analyses of dispersal to identify shifts that may have dramatic consequences for population viability

    Detection of an energetic flare from the M5V secondary star in the Polar MQ Dra

    Get PDF
    MQ Dra is a strongly magnetic Cataclysmic Variable whose white dwarf accretes material from its secondary star through a stellar wind at a low rate. TESS observations were made of MQ Dra in four sectors in Cycle 2 and show a short duration, high energy flare (similar to 10(35) erg) which has a profile characteristic of a flare from the M5V secondary star. This is one of the few occasions where an energetic flare has been seen from a Polar. We find no evidence that the flare caused a change in the light curve following the event and consider whether a coronal mass ejection was associated with the flare. We compare the frequency of energetic flares from the secondary star in MQ Dra with M dwarf stars and discuss the overall flare rate of stars with rotation periods shorter than 0.2 d and how such fast rotators can generate magnetic fields with low differential rotation rates

    The BeppoSAX view of the hard X-ray background

    Get PDF
    First results on a medium-deep X-ray survey in the "new" 5-10 keV band carried out with the MECS detectors onboard BeppoSAX are presented. The High Energy Llarge Area Survey (HELLAS) is aimed to directly explore a band where the energy density of the X-ray background is more than twice than that in the soft (0.5-2.0 keV) band. The optical identification follow-up of the first ten HELLAS hard X-ray sources indicate that Active Galactic Nuclei are the dominant population at 5-10 keV fluxes of the order of 10e-13 cgs. We discuss the implications of these findings for the AGN synthesis models for the XRB.Comment: 6 pages, 4 figures, uses psfig.sty. Accepted for publication in Advances in Space Research, Proceedings of the 32nd Scientific Assembly of COSPA
    • 

    corecore