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ABSTRACT
Observationally, white dwarf stars are a remarkably homogeneous class with a minimum observed

K. Theoretically, the physics that determines their cooling timescales is relatively moreTeff D 4000
straightforward than that which determines main-sequence evolutionary timescales. As a result, the white
dwarf luminosity function has for the last decade been used as a probe of the age and star formation
rate of the Galactic disk, providing an estimated local disk age of D10 Gyr with estimated total uncer-
tainties of roughly 20%. A long-standing criticism of the technique is that the reality of the reported
downturn in the luminosity function (LF) hinges on just a handful of stars and on statistical arguments
that fainter (older) objects would have been observed were they present. Indeed, the likely statistical
variations of these small-number samples represent one of the primary uncertainties in the derived
Galactic age, and the behavior of SchmidtÏs estimator in this limit is not well understood.1/VmaxIn this work, we explore these uncertainties numerically by means of a Monte Carlo population syn-
thesis code that simulates the kinematics and relative numbers of cooling white dwarfs. The
““ observationally selected ÏÏ subsamples are drawn using typical proper motion and V -magnitude limits.
The corresponding LFs are then computed and compared to the input-integrated LFs. The results1/Vmaxfrom our (noise-free) data suggest that (1) SchmidtÏs technique is a reliable and well-behaved esti-1/Vmaxmator of the true space density with typical uncertainties of D50% for 50 point samples and 25% for
200 point samples ; (2) the age uncertainties quoted in previously published observational studies of the
LF are consistent with uncertainties in the Monte Carlo resultsÈspeciÐcally, there is a D15% and

observational uncertainty in the ages inferred from 50 point and 200 point samples, respectively ;[10%
and (3) the large statistical variations in the bright end of these LFsÈeven in the large-N limitÈpreclude
using the white dwarf LF to obtain an estimate of the recent star formation rate as a function of time.
Subject headings : methods : statistical È stars : luminosity function, mass function È stars : statistics È

white dwarfs

1. INTRODUCTION

The use of white dwarf (WD) stars as a probe of the
Galactic age has a long history, dating to SchmidtÏs (1959)
realization that the cooling law could be usedMestel (1952)
to provide a lower limit to the age of the Galaxy if a down-
turn in the white dwarf luminosity function (WDLF) could
be observationally detectedÈi.e., if a lack of white dwarfs
fainter than some luminosity were discovered and could be
shown to be statistically signiÐcant (see also &DÏAntona
Mazzitelli and the review by & Chanmugam1978 Koester

et al. compared theoretical WDLFs to1990). Winget (1987)
the preliminary observational results of Liebert and col-
laborators that showed a downturn at a luminosity of log

These authors estimated a local disk age of(L /L
_
) B [4.4.

9.3 Gyr and suggested a lower limit to the age of the uni-
verse of Gyr. Dahn, & MonettunivZ 10.3 Liebert, (1988,
hereafter LDM; see also Dahn, & MonetLiebert, 1989)
presented a detailed analysis of their observations using the

method of They concluded that the1/Vmax Schmidt (1968).
deÐcit of white dwarf stars cooler than K inTeff D 4000
their sample reÑects a true paucity of faint white dwarfs and
is not the result of some selection e†ect.

The theoretical implications of the shape of the LDM
luminosity function (LF) have been studied by several
authors, including & Laughlin YuanIben (1989), (1989,

et al. & Scalo Wood1992), Garc•� a-Berro (1988), Noh (1990),
and et al. Many of these(1990, 1992, 1995), Hernanz (1994).

studies produced age estimates consistent with the Winget
et al. results to within 1È2 GyrÈnot surprising, since(1987)

most used the Winget et al. or C-core coolingWood (1992)
curves. However, using C/O-core, DA modelsWood (1995)
with updated opacities and more realistic H/He/C/O com-
position proÐles, found Gyr when comparingtdiskB 7.5
with the data (see also et al. SuchLDM Oswalt 1996).
young age estimates for the local Galactic disk are difficult
to reconcile with the Gyr ages of the old halothalo B 15
globular clusters & Hogan(Bolte 1995 ; Chaboyer 1995)
because essentially all Galactic formation and chemo-
evolutionary models suggest delays of D3 Gyr at most
between the onset of star formation in the halo and in the
local disk (e.g., Truran, & Hensler but cf.Burkert, 1992,

Matteucci, & GrattonChiappini, 1997).
We note that one proposed solution to this age problem

is the phase separation model (see et al.Segretain 1994 ;
et al. and references therein). Within thisHernanz 1994

model, the spindle form of the C-O phase diagram yields an
O-rich solid with a thin overlaying C-rich Ñuid layer ; a
Rayleigh-Taylor instability mixes this Ñuid into the C-O
Ñuid above. The release of binding energy (i.e., the change in
gravitational plus internal energy) acts to increase the
cooling timescale by 10%È20% at the luminosity of the

downturn. The efficiency of the phase separationLDM
process, however, is a matter of some debate within the
white dwarf community. In any event, the phase separation
model does not a†ect the conclusions of this work, since we
are not attempting to derive absolute ages, and we do not
discuss it further.

Recently, et al. hereafter OSWH) publishedOswalt (1996,

870
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a preliminary LF based on 50 stars observed as part of their
survey of common proper-motion binaries. Their results

Gyr but with no upper limit at the 2 p level)(tdiskB 9.5~0.8`1.1
indicate a downturn age roughly 2 Gyr older than that of

using the same models. This new esti-LDM (Wood 1995)
mate is formally consistent with the age of the halo globular
cluster system at the 2 p level but is difficult to reconcile
with the 7.5 Gyr revised age of the LDM sample. The LDM
and results are shown in Also shown areOSWH Figure 1.
theoretical LFs integrated numerically using the code
LFINT (see and below). The LDM points andWood 1992
the LFINT curves have been normalized to the OSWH
integrated space density to facilitate intercomparison. The
OSWH space density of D5 per 103 pc3 is roughly a factor
of 2 above the LDM-quoted value of D3 per 103 pc3, which
raises the question : Are factor of 2 variations to be expected
using the method, and how closely do such estimated1/Vmaxspace densities predict the actual space density of the parent
population?

More importantly for white dwarf cosmochronometry :
How reliable are the observed LFs at the faint end where
the numbers of objects in the faintest populated LF bin is

Are the error estimates given by andN [ 3? LDM OSWH
reasonable? These are not trivial questions. Because of the
need to establish a complete observational sample, only a
few of all known white dwarfs contribute to the empirical
luminosity function. Although observed disk kinematics
suggest that because of radial mixing our sample represents
an annulus in the Galaxy with radial extent RDR0(1^ 14)
(e.g., Latham, & Laird it is impossible toCarney, 1990),
know a priori if our observed sample happens to be sta-
tistically anomalous in some way. The uncertainties are
exacerbated by the use of the method, the noise1/Vmaxproperties of which are not well understood, particularly in

FIG. 1.ÈThe observed (open circles) and ( Ðlled circles)LDM OSWH
luminosity functions. Also shown are numerically integrated LFs using the
parameters discussed in the text. The best-Ðt 9.5 Gyr isochrone is shown as
a histogram binned as the observed data of OSWH. To facilitate compari-
son with the previous results, the LDM points have been vertically shifted
to match the integrated OSWH space density of 0.0076 pc~3. The inte-
grated LFs have all been normalized to this cumulative density for lumi-
nosities brighter than log the lower boundary of the(L /L

_
) \ [4.75,

OSWH LF.

the limit of small N (see For example, brightFelton 1976).
objects near the sample proper-motion limit receive high
weight in the method, and so small changes in the1/Vmaxadopted survey limits can have a large e†ect on the derived
luminosity function (cf. & Smith withOswalt 1995 OSWH).

To understand the behavior of the estimator, we1/Vmaxhave explored the uncertainties in the observed luminosity
function by means of extensive Monte Carlo (MC) simula-
tions. The resulting code, MCGoLF (\Monte Carlo
Generator of Luminosity Functions), populates a computa-
tional space with a pseudo-random sample whose kine-
matics are similar to those of the observed sample and
whose relative number statistics are obtained by drawing
from a probability density distribution deÐned by an inte-
grated luminosity function calculated with the code LFINT
(see From here, the sample is culled by properWood 1992).
motion and limiting V apparent magnitude, as described in

The objects retained in a given sample are then used to° 2.
derive a luminosity function for that sample. In1/Vmax ° 3,
by drawing a large number of independent samples and
comparing these against both the observed samples and the
integrated theoretical LFs, we empirically quantify the
uncertainties in the derived disk ages resulting from low-N
statistics at the faint end of the white dwarf luminosity func-
tion. We conclude in with an assessment of the precision° 4
inherent in the determination of the age and star formation
history of the local Galactic disk from studies of the WDLF.

2. THE SIMULATION PROGRAM MCGoLF

2.1. User Inputs
The user inputs to MCGoLF include the number of

““ stars ÏÏ in the Ðnal sample the disk age in billions ofNobs,years the maximum distance (in parsecs) for the sampletdisk,objects the root mean squared velocity (in kilo-Dmax, vrmsmeters per second), the lower proper-motion limit (inklimarcseconds per year), the apparent V magnitude limit Vlim,
an evolutionary summary Ðle from WDEC (the White
Dwarf Evolutionary Code) & Van Horn(Lamb 1975 ;

an integrated theoretical LF calculated withWood 1995),
LFINT (see and the number of samples toWood 1992),
calculate for each input parameter set Nsamp.

2.1.1. Populating the Space : T heoretical Selection

We use the following notation : P(0, 1) indicates a uniform
deviate between the limits 0.0 and 1.0, and G(p) indicates a
normal (Gaussian) deviate with variance p and zero mean.
The normal deviate is calculated using the Box-Muller
method (see et al. ° 7.2). The heart of any MontePress 1986,
Carlo simulation code is the uniform deviate pseudo-
random number generator. MCGoLF uses portable
FORTRAN code developed by It passesMarsaglia (1987).
all of the tests for random number generators and has a
period of 2144.

The algorithm at the heart of MCGoLF is quite simple.
We populate a volume with objects, drawing ourVsamp Ntot““ observationally selected ÏÏ subsample from this population.
The observer is stationary at the origin of the coordinate
system. Positions are assigned by three calls to the random
number generator

x
j
\ P(0, Dmax) , j \ 1, 2, 3 , (1)

where points are rejected if and where iso r o[Dmax, Dmaxchosen to be well beyond the maximum distance of any
object in any observationally selected subsample. Because
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only the Ðrst octant is populated, the volume of the sample
is the true space density isVsamp\ (n/6)Dmax3 , 'true\and the mass density is whereNtot/Vsamp, o \ 'trueSmT, Ntotis the total number of objects in the sample volume and

is the mean mass of the objects in solarSmT 4SM/M
_

T
masses. Note also that although the e†ects of the Ðnite scale
height of the Galaxy are not included, the mean distance of
the computed samples ranges from D15 to 70 pc (sequences
E and A, respectively, see below) and the maximum distance
of any given star in all observationally selected samples is
D240 pc. Thus, this omission will have little e†ect for most
samples, since the local scale height is D250 pc.

For the velocity components, MCGoLF draws 3 times
from the normal distribution,

v
i
\ G(vrms) , (2)

where we have taken km s~1 for all threep \ vrms \ 40
principal axes. There is no attempt to simulate a halo com-
ponent to the velocity distribution, but this simple prescrip-
tion reproduces the observed kinematics well enough for
the purposes of this work.

Next is the discrimination based on the luminosity func-
tion. For this, MCGoLF makes use of a previously com-
puted integrated LF (LFINT output) as the discriminator ;
this curve is normalized to a peak of unity on input, and
spline interpolation coefficients are computed. For each
trial, two uniform deviate random numbers are drawn. The
Ðrst of these is scaled to provide a value for l4 log (L /L

_
)

between the maximum and minimum values for the sample,

ltest\ P(0, [8) , (3)

where the minimum value is below the lowest luminosity
where any objects would be expected, even in a 20 Gyr
sample. The spline-interpolated value of the normalized LF
at this random trial luminosity, is compared'LFINT(ltest),with the value of the second random number If'test. 'test\i.e., if the test point is below the appropriate-'LFINT(ltest),age curve, then the object ““ exists ÏÏ in at the locationVsamp

l) and contributes to the overall space density(x
j
, v

j
,

'true\ Ntot/Vsamp.

2.1.2. T he Observationally Selected Subsample and the 1/VmaxL uminosity Function Estimator

At this point, we have a procedure for populating a
region of space with objects that have luminosities drawn
from a probability distribution function deÐned by inte-
grated LFs of various ages. The next step is to determine
whether the object makes it into the observationally selec-
ted subsampleÈi.e., whether the proper motion and V mag-
nitude are within the speciÐed observational limits. The
proper motion is calculated from the relative space motion
and distance, and objects are culled if the proper motion is
below the input lower limit. For each object with k ºklim,
we interpolate in the WDEC sequence data for a 0.6 M

_DA WD model with thick surface layers to obtain tcool, Teff,and log g corresponding to and then use these to inter-ltest,polate in the atmospheric tables of Wesemael, &Bergeron,
Beauchamp to obtain and hence V magnitudes.(1995) MVIf the V magnitude is brighter than the input limit, then the
object becomes the ith member of the observationally selec-
ted subsample, and the data are stored (r

i
, ¿

i
, vrad,i, vtan,i, ki

,
and In our MC sample populations, roughlyl

i
, Teff,i, V

i
).

200È600 objects exist in for each object in the obser-Vsampvationally selected subsample.

Once the observationally selected subsample is popu-
lated, the luminosity function can be calculated. The clas-
sical estimator '\ N/V for a volume-limited sample is of
little practical use for analyzing the small-N, strongly local-
ized and kinematically biased group of stars selected on the
basis of proper motion and apparent magnitude. For these
samples, the method of Schmidt is gener-1/Vmax (1968, 1975)
ally regarded as the superior estimator of the luminosity
function In this method, each starÏs contribu-(Felton 1976).
tion to the luminosity function is weighted by the inverse of
the maximum volume in which this star would be observ-
able. For example, for a given luminosity bin with index k,
the space density is the sum (see Schmidt 1968)

'
k
\ ;

i/1

Nk 1
Vmax,i

, (4)

for the objects with luminosities within the bin bound-N
karies. For each object, where hereVmax,i \ (4/3)nbrmax,i3 ,

andb \ 18,

rmax,i \ min
C
r
i

k
i

klim
, r

i
10~0.2(Vi~Vlim)

D
, (5)

is the maximum distance an object could have and still be
within the observed limits in both apparent magnitude and
proper motion. Following we set the uncertainty ofLDM,
each starÏs contribution equal to that starÏs contribution
(e.g., 1^ 1), and sum the errors in quadrature within a given
luminosity bin,

p
k
\
C

;
i/1

Nk A 1
Vmax,i

B2D1@2
. (6)

One of the points we address below is how this arbitrary
but conservative method of computing error estimates com-
pares with the Monte Carlo simulation results.

3. RESULTS

3.1. T he Computational Grid
In these simulations we draw from parent populations

with kinematics similar to the observed population of white
dwarf stars. For these preliminary calculations we have
computed luminosity functions for sample populations dif-
fering only in their proper-motion limits. While we have
varied the limiting magnitude limit in some runs, these runs
provide no information beyond that presented below, since
for these samples the selection is dominated by the proper-
motion constraint. In a follow-up publication, we will
present the results of our MC study of magnitude-limited
surveys, such as that of Liebert, & GreenFleming, (1986).
Because these samples penetrate considerably

kpcÈthe calculations must include thedeeperÈDmaxD 1
scale height of the Galaxy as well as interstellar absorption.

gives the parameter set grid for MC populationsTable 1
AÈF. Note that population A is representative of the

sample, and population E is representative of theOSWH
sample. For each input age (7È18 Gyr in incrementsLDM

of 1 Gyr) and chosen value of we drawNobs, Nsamp\ 10
samples, and from these the luminosity functions are
computed.

3.2. Kinematics
3.2.1. Positions

For samples selected as these have beenÈby proper
motion and V magnitudeÈwe would expect that the mean
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TABLE 1

INPUT PARAMETERS FOR MONTE CARLO SIMULATION RUNS

tdisk Dmax vrms klim VlimSequence Nobs (Gyr) (pc) (km s~1) (arcsec yr~1) (mag)

A . . . . . . . . 50, 200 7(1)18 400 40 0.15 19
B . . . . . . . . 50, 200 7(1)18 300 40 0.20 19
C . . . . . . . . 50, 200 7(1)18 150 40 0.40 19
D . . . . . . . . 50, 200 7(1)18 100 40 0.60 19
E . . . . . . . . 50, 200 7(1)18 100 40 0.80 19
F . . . . . . . . 50, 200 7(1)18 100 40 1.00 19

distance would be small and that the sample would be
biased against objects with small space velocities. Both of
these expectations are realized in these simulations. Figures

and show the positions and relative luminosities of the2 3
50 objects that comprise two representative, 10 Gyr old
samples drawn from populations A@ and respectively,E@,1
where glyph size is proportional to l, and the scale is the
same in both Ðgures. In addition, we show the positions (as
points) of all the objects in that did notNtot[ Nsamp Vsampsatisfy the selection criteria. shows a pcFigure 2 Dmax\ 200
volume and indicates also the relative size of the Dmax \ 50

FIG. 2.ÈPositions and relative luminosities of the 50 ““ observationally
selected ÏÏ objects drawn using population sample A@ and an age of 10 Gyr,
which approximates that of Sample objects are shown as glyphs ;OSWH.
positions of rejected objects that exist in are shown as points. TheVsampbounding box has volume (200 pc)3. The relative sizes of the glyphs indi-
cate the luminosity lÈbigger is brighter. The inset box shows the (50 pc)3
volume of showing similar data for population sample E@. The scaleFig. 3,
relating l to glyph size is the same for the two Ðgures. Clearly, the lower
proper-motion limit of A@ results in a much larger e†ective sample volume.
As a result, brighter objects, which are intrinsically rare, have a greater
chance of being included in the observationally selected sample.

1 We designate these particular sample populations A@ and E@ since their
values di†er from those given in (here and 50 pc,Dmax Table 1 Dmax \ 200

respectively, for A@ and E@), while all other parameters are the same. For the
purpose of these Ðgures and the accompanying discussion, it is desirable to
set to the typical maximum distance obtained in the samples, insteadDmaxof choosing it to be well beyond the maximum distance at which a star
could be and still make it into the observationally selected subsample, as is
the case for the results discussed in the remainder of this work.

pc volume of Both samples are populated uni-Figure 3.
formly, but the observationally selected subsamples are
strongly biased toward r \ 0.

The Ðgures also clearly demonstrate the expected e†ect of
the lower proper-motion limit sampling a signiÐcantly
larger volume. If proper motion alone was the selection
criterion, then we would expect that population A would
sample a volume (0.15/0.8)~3B 150 times that of sample E.
We Ðnd that to acquire 50 objects in each of the two
““ observed ÏÏ subsamples of A@ and E@ Gyr,(tdisk \ 10

pc), an average total of D1560 objects mustDmax\ 200
populate for parameter set A@ and D85,300 for E@ÈaVsampratio of 55.

shows the radial distributions of the 500 pointFigure 4
samples we have for each age, for populations A, C, and E,
and demonstrates the sensitivity to proper-motion limit

Also shown to guide the eye is a dotted line at theklim.
average distance of each observed sample population, 65.8,
30.3, and 16.2 pc, respectively. The ratio (65.8/16.2)3B 67
gives a measure of the ratio of the e†ective sampling
volumes of population A relative to population E, which is
complementary to and consistent with the estimate above.
A Ðnal, extreme measure is given by the cube of the ratio of
the maximum distances for stars in the observationally selec-
ted subsamples, (230.9/48.0)3B 110. This is closer to the

FIG. 3.ÈSame as but for a 50 object draw from populationFig. 2,
sample E@, which approximates that of Here, the bounding box hasLDM.
volume (50 pc)3.



874 WOOD & OSWALT Vol. 497

FIG. 4.ÈHistograms showing radial distributions as a function of age for populations A, C, and E. The dotted lines indicate the average distance of each
sample population : 65.8, 30.3, and 16.2 pc, respectively, for sample populations A, C, and E. The samples cluster progressively closer to the origin for larger
proper-motion limits, as expected.

value of D150 expected if proper motion were the only
selection criterion. Thus, population A samples an e†ective
volume D60È100 times larger than E, supporting OSWHÏs
claim that their luminosity function samples a volume at
least 50 times larger than that of LDM.

Comparing populations C and E, the cube of the ratio of
mean distances, (30.3/16.2)3\ 6.5, is very near the value of
(0.4/0.8)~3\ 8.0 expected if the samples were selected only
by proper motion. A Ðnal, subtle but expected e†ect appar-
ent in is that older samples cluster progressivelyFigure 4
nearer the origin as the number of very faint objects in these
Ðxed-number samples increases.

The fact that the ratio of e†ective sample volumes is near
the ratio expected for selection by proper motion only sug-

gests that stars are culled most frequently by proper
motion, and only rarely because they are too faint in V . The
results presented in which summarizes the simula-Table 2,
tion selection statistics for populations A@ and E@, conÐrm
these suspicions. We Ðnd, for population E@, that of the
13,702 objects culled to arrive at a Ðnal observed sample of
500, fully 86% were brighter than but hadVlim k \klim,
whereas only 0.04% were fainter than but passed theVlimproper-motion test. The remainder failed both tests. The
statistics for population A@ are more balanced : 13% are
culled by proper motion only, 5% by V magnitude only,
and the remainder fail both tests.

We can view these results in graphical form using a plot
of the logarithm of the cumulative count versus logarithm

TABLE 2

SELECTION STATISTICS

NUMBER REJECTED BY

klim DmaxSEQUENCE Nobs (arcsec yr~1) (pc) Ntot k V Both k and V

A@ . . . . . . . . 500 0.15 200 15,580 1891 788 12401
E@ . . . . . . . . 500 0.80 50 14,202 11778 6 1918
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of proper motion where the cumulative count is deÐnedk0,as

C(k0) 4 log ;
k;k0

n . (7)

If the sample is complete, then the relation versus logC(k0)will have a slope of [3 (e.g., & Smithk0 Oswalt 1995).
shows the cumulative counts for 2000 pointFigure 5

samples drawn from populations AÈE. Also shown for com-
parison are lines with slopes of [3. Our ideal observational
selection (i.e., zero observational bias/error) results in
samples that are complete down to proper-motion limits of

yr~1, as indicated by the [3 slopes obtainedklimB 0A.4
from populations C, D, and E. Populations A and B,
however, show deÐcits near their proper-motion limits,
indicating that a signiÐcant fraction of these objects are
being culled by V magnitude.

Observationally, it is no simple matter to insure that WD
surveys are complete, yet we can reliably estimate the space
density only when the observational limits are chosen so
that completeness is either known (assumed) to be 100% or
the fractional incompleteness can be quantitatively esti-
mated. Indeed, chose their lower proper-motionLDM
survey limit of yr~1 in an attempt to make theirklim\ 0A.8
observational database complete. The Luyten and Giclas
catalogs of proper-motion objects are complete down to a
limit of yr~1 and include stars with k as small asD1A.0

yr~1. & Smith Ðnd that the cumula-k º 0A.1 Oswalt (1995)
tive count diagrams of these survey data, while log-linear,
indicate signiÐcant incompleteness, in that the slopes are
signiÐcantly di†erent from [3. Below yr~1, the dataD1A.0
indicate progressive incompleteness and hence are not
immediately useful. employed a completeness cor-OSWH
rection procedure that made use of the relative slopes of the
cumulative count plots to e†ectively account for that frac-
tion of objects that a proper-motion survey misses. A
summary of this procedure was presented in detailsOSWH;
will be presented elsewhere. The raw and corrected curves
shown in are roughly parallel, suggesting that theOSWH

FIG. 5.ÈCumulative counts of the number of objects with proper
motion greater than the abscissa value for 2000 object samples drawn from
populations AÈE. Also shown for comparison are dotted lines with slopes
of [3, which are indicative of complete samples. Note that the samples
from populations C, D, and E are complete, but that populations A and B
show deÐcits near their proper-motion limits. This indicates that the
former are culled almost entirely by proper motion, whereas some non-
negligible fraction of the latter are culled by apparent magnitude.

incompleteness is not a strong function of although it isMV,
a function of apparent magnitude. In the next paper in this
series, we plan to explore more fully the consequences of
photometric uncertainties and survey incompleteness on
the derived observational LF.

The standard method of checking for completeness in the
technique is to compute for the sample.1/Vmax SV /VmaxTFor complete samples, Both theSV /VmaxT \ 0.50. OSWH

and samples are incomplete based ontheirLDM SV /VmaxTvalues of 0.324^ 0.046 and 0.369^ 0.046, respectively. Our
MC simulations are complete, with toSV /VmaxT \ 0.50
within the errors.

Our MC simulations provide an ideal test bed to explore
the reliability of the space density estimation in SchmidtÏs

method. For each sample we calculated (see1/Vmax '
Vmax

eq.
and then compared this with In we show[8]) 'true. Figure 6

the histograms of the number of samples as a function of
for populations AÈE, and for 50 point andR4'

Vmax
/'true200 point samples. The data comprising each panel within

the Ðgure come from the 10 samples for each of the 12 ages,
7È18 Gyr, inclusive. Some panels do not show all the data ;
the number of samples beyond the right edge of these panels
is indicated in the lower, right-hand corner.

It is clear from this Ðgure that the technique pro-1/Vmaxvides a reliable estimate of the space The distribu-density.2
tions are skewed, however. For the 50 point samples, we
Ðnd a global mean SRT \ 0.97^ 0.49 and a median of

whereas the 200 point samples yieldRmed\ 0.88,
SRT \ 0.98^ 0.24 and The width of the 50Rmed\ 0.93.
point distributions suggests that the factor of 2 di†erence
between the and space densities could simplyLDM OSWH
be the result of sampling statistics within the method.1/VmaxAn additional contributing factor may be that the LDM
data were incomplete but not corrected for incompleteness
as were the OSWH data.

3.2.2. Velocities

shows the velocity distributions of 2000 point,Figure 7
10 Gyr samples from populations A and E. These distribu-
tions are similar to that obtained by et al. theirSion (1988,
Fig. 1) in a study of WD kinematics, as expected since we
used the Sion et al. results to set our value and velocityvrmsdistribution width. The primary di†erence between the
observed and simulated data is the deÐcit of low- and high-
velocity objects in the simulated data : the former results
from a higher proper-motion limit, and the latter results
from the halo and thick-disk population stars in the
observed sample. As expected, the velocity distribution for
population E is biased toward higher velocities compared
to that of population A. In addition, there is a very weak
trend for the oldest samples to have mean smaller thanvtanfor the youngest samples from a given population. This is
simply a result of the oldest samplesÏ smaller mean dis-
tances.

3.3. W hite Dwarf L uminosity Function Turndown Ages :
Statistical Uncertainties

In Figures we show the results for parameter set A8È11,
for input ages of 7, 10, 13, and 16 Gyr. For comparison, the
input LFINT curves are also shown for these ages, and to
facilitate comparison of the Monte Carlo results with the

2 Because of a coding error in an early version of MCGoLF, a trend in
vs. proper motion was erroneously reported in'

Vmax
/'true Wood (1997).
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FIG. 6.ÈPanel plot showing the histogram distributions of the ratio
as a function of proper-motion limit for both 50 object and 200'

Vmax
/'trueobject samples. Each panel shows the histogram of the 120 '

Vmax
/'truevalues resulting from the 10 samples at each of the 12 input ages (7È18 Gyr,

inclusive). The number of points that fall outside the plot boundsÈif
nonzeroÈare indicated in the lower, right-hand corner of each panel. We
Ðnd no signiÐcant trend as a function of proper-motion limit. The median

is 0.91 and the mean is 0.97, suggesting that observed space'
Vmax

/'truedensities from ““ complete ÏÏ samples could in principle be corrected upward
by D10%, although this is not something we would recommend, since the
uncertainty in ' is signiÐcantly larger than this. Note that we also searched
for a trend in as a function of age and found none.'

Vmax
/'true

input LF, the former have been renormalized to the latter
(but see below). Within each panel, there are 10 independent
distributions drawn from the parent population. Each dis-
tribution is binned twice, with their respective bin centers
di†ering by the bin width (i.e., the ““ a ÏÏ and ““ b ÏÏ LFs in the12Ðgures) ; the ordinate scale is correct for the bottom (““ 1a ÏÏ
and ““ 1b ÏÏ) distribution, and the other curves have been
successively o†set by a constant. The number of objects
contributing to each bin is indicated above each point, and
the errors have been computed according to equation (6)
above. For bins populated by a single object, the formal
uncertainty is unbounded in the negative direction, but to
avoid visual confusion we have shown these as error bars
with a length of 2.0 (the separation between the curves is

FIG. 7.ÈHistograms of tangential velocity for 10 Gyr samples from
populations A and E. The distributions are similar to observed distribu-
tions but lack the low- and high-velocity tails (see text).

3.0). Next to each pair of curves are three numbers. The top
one is the sample number, the middle one is the summed

space density,1/Vmax

'
Vmax

\ ;
i/1

Nobs A 1
Vmax,i

B
, (8)

and the bottom one is the true space density,

'true\ Ntot/Vsamp , (9)

where the space densities expressed in units of (103 pc3)~1.
Note that although can di†er from by a factor of'

Vmax
'true2 or more, the overall shape of the observationally selected

sample LF does not di†er in any systematic way from the
input LFINT curves. This is an important result because it
means that we can still derive reliable age estimates from
samples with proper-motion limits well below the yr~10A.4
““ complete ÏÏ sample limit discussed above. Adopting a lower
proper-motion limit for the survey results in an enormous
increase in the number of objects that can contribute to the
LF, with a corresponding increase in the accuracy of the age
determination.

The 7 Gyr samples would all be assigned ages within 0.5
Gyr of the input age, but any attempts to infer variations in
the recent star formation rate from the LF points with lZ

[3.5 Gyr) would be futile. An examination of the(tcool[ 2
other panel LF plots shows this is a general result for
samples selected by both proper motion and apparent mag-
nitude. The 10 Gyr samples show considerably more varia-
tion in the location of the lowest luminosity bin : three of the
10 samples would be interpreted as having ages 1È2 Gyr
di†erent from the input age, and two of the 10 have peak LF
bins that are D2 p below the input peak. The 13 and 16 Gyr
samples also show considerable variation in the lowest
luminosity bins, and in D30% of the samples the inferred
age would be 1È2 Gyr (D15%) o† the input age. The most
dramatic result from the 16 Gyr sample, however, is that the
extra 3 Gyr adds only about three additional stars to the log

and fainter bins in these 50 point samples.(L /L
_
) \ [5
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FIG. 8.ÈMCGoLF results for 10 samples drawn from the parent population speciÐed by the sequence A parameters in for an age of 7 Gyr. TheTable 1
bottom curve has approximately the proper normalization for the space density, and the other curves have been successively o†set by 3.0 dex. The left
and right LFs reÑect two di†erent binnings of the same dataÈthe two distributions are o†set by 1/2 the bin width. Underneath the left-hand labels are the

space densities for the sample in units of 103 pc3. Error bars indicate 1 p errors calculated as discussed in the text with the exception of bins that'
Vmax

and 'truehave only one member ; these formally would have error bars of ]0.3 and [O, but for purposes of display we set [O ] [2. Also included for purposes of
comparison are the integrated LF curves for disk ages 7, 10, 13, and 16 Gyr. For clarity, the 7 Gyr curve has been truncated at the cool end (cf. NoteFig. 1).
the sample-to-sample variations in the bright end of the LFÈthese results suggest that variations in the recent star formation rates cannot be reliably inferred
from the bright end of the LF if derived using the estimator.1/Vmax

This suggests that our leverage on the local age is rather
weak beyond an age of 13 Gyr, and so signiÐcantly larger
observational samples are needed. The bright end of these
sample population A LFs again show considerable varia-
tions relative to the input curve in roughly half of the
samples, and these variations become more extreme for the
older samples.

shows the 10 Gyr samples from population E.Figure 12
Because population E samples a much smaller volume than
population A and the space density of bright objects is
intrinsically low, these LFs are biased toward fainter lumi-
nosities, as expected. The statistical variations in the LFs
are again substantial. Indeed, based on these noise-free
simulations, it is perhaps surprising that the observed LFs
are as smooth as they are. In any event, these simulations
taken in toto demonstrate that no conclusions regarding
the recent star formation rate can be drawn from samples
selected on the basis of proper motion alone. The Fleming

et al. LF of hot white dwarfs, used by is a(1986) LDM,
magnitude-limited sample only (not magnitude and proper
motion) and so may not necessarily be subject to these same
uncertainties, but caution is probably warranted when
interpreting Ðne details of any WDLF. We will use our MC
code to explore the statistical variations in magnitude-
limited samples in a future publication.

shows 10 200 point samples for an age of 10Figure 13
Gyr. Here, we see that only one sample (sample 6) could be
interpreted to have an age D1 Gyr di†erent from the input
age ; the others are all within D0.5 Gyr of the input age. The
7, 13, and 16 Gyr samples (not shown) also support these
conclusions. As above, the largest variations in the inferred
ages results from samples with objects in the faintestN [ 5
bin. Rebinning the 200 point samples into bins with a width
of 0.25 dex does not signiÐcantly improve the scatter at the
faint end, since this results in several bins with TheseN [ 5.
results, however, suggest that observed samples with N Z
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FIG. 9.ÈSame as but for an age of 10 Gyr. Note in this and the following two Ðgures that roughly 30% of the samples would give estimated agesFig. 8,
1È2 Gyr di†erent from the input age.

200 stars should yield uncertainties in the age estimates that
are at the D5% level, and such samples are currently being
analyzed (Smith 1997).

4. DISCUSSION

The white dwarf luminosity function has been used exten-
sively in recent years as a probe of the age and star forma-
tion history of the solar neighborhood in the Galaxy. The
goal of this work has been to investigate the inherent sta-
tistical uncertainties in the recent determinations of the
white dwarf luminosity function by means of extensive
Monte Carlo simulations. We Ðnd that SchmidtÏs 1/Vmaxestimator provides an extremely useful but imperfect probe
of the white dwarf luminosity function. Three major results
have emerged from this study.

First, the space densities obtained using the tech-1/Vmaxnique provide robust estimates of the true local space
density. Sample-to-sample variations in these noise-free
data suggest an intrinsic statistical uncertainty of roughly
50% and 25% for 50 and 200 point samples, respectively.

Second, ages inferred from observed distributions must
be considered uncertain by D15% from sampling statistics

alone if there are D50 objects in the sample and N [ 5
objects in the lowest luminosity bin. For samples with
N B 200 objects, the uncertainties are typically [10%.
These results are consistent with the conservative error esti-
mates adopted by and (see Note thatLDM OSWH eq. [6]).
while other cooling codes yield di†ering estimates for
cooling timescales, it seems likely to us that the internal
uncertainties will remain at the 10%È15% level. Both LDM
and OSWH have three objects in their lowest luminosity
bins, so it is possible, but unlikely with a probability[10%
that these two samples are consistent with a single parent
population. Indeed, these results suggest that it may be best
to choose the bin centers such the bin widths are as narrow
as possible while still leaving the lowest luminosity bin with

objects, although the trade-o† is that this wouldN Z 5
move the lowest luminosity bin to higher luminosity and
hence reduce the leverage on the age determination. It is
possible that a statistical test (e.g., Kolmogorov-Smirnov)
on a nonbinned sample of the coolest objects would prove
to be a superior tool for the analysis of the WDLF (G.
Chabrier 1997, private communication).

Third, even the larger samples have LFs whose bright
ends show substantial deviations from the input functions,
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FIG. 10.ÈSame as but for an age of 13 GyrFig. 8,

suggesting that it is impossible to reliably infer any varia-
tions in the recent star formation rate based on samples
selected by both proper motion and apparent magnitude.

Assuming a 1 Gyr uncertainty from sampling statistics
and adding this to the D1 Gyr uncertainty resulting from
an incomplete understanding of the detailed inputs to white
dwarf and galactic evolution models white(Wood 1992),
dwarf cosmochronology can currently be considered to give
ages good to roughly ^20%. With larger observational
samples that will soon be available and with(Smith 1997),
continuing improvements in the determinations of white
dwarf composition proÐles and constitutive physics in the
evolutionary models, this uncertainty should be reduced to
less than ^10% in the near future.

Our thanks to Don Winget and Steve Kawaler for useful
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Data Explorer networks used to visualize the data in
Figures and Our sincere thanks to the referee, Gilles2 3.
Chabrier, for pointing out an error in the original manu-
script. This work was supported in part by the National
Science Foundation through grants AST 92-17988
(M. A. W.) and AST 90-16284 (T. D. O.) and the NASA
Astrophysics Theory Program through grant NAG 5-3103
(M. A. W.). Additional support was provided to Nathan
Miller by the NSF through the SARA Research Experi-
ences for Undergraduates Summer Internship Program
(NSF AST 94-23922).



FIG. 11.ÈSame as but for an age of 16 GyrFig. 8,
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FIG. 12.ÈSame as but for parameter set E. Compare the statistical noise in this Ðgure with that of Figs. andFig. 9, 1 9.
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FIG. 13.ÈSame as but for 200 point samples and an age of 10 Gyr. In this Ðgure, the ages of all samples would be assigned ages within 0.5 Gyr ofFig. 9,
the input age, but as seen before, statistical variations at the bright end of the LF make derivations of the recent star formation rate meaningless.
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