4,345 research outputs found

    ALMA Temporal Phase Stability and the Effectiveness of Water Vapor Radiometer

    Full text link
    Atacama Large Millimeter/submillimeter Array (ALMA) will be the world largest mm/submm interferometer, and currently the Early Science is ongoing, together with the commissioning and science verification (CSV). Here we present a study of the temporal phase stability of the entire ALMA system from antennas to the correlator. We verified the temporal phase stability of ALMA using data, taken during the last two years of CSV activities. The data consist of integrations on strong point sources (i.e., bright quasars) at various frequency bands, and at various baseline lengths (up to 600 m). From the observations of strong quasars for a long time (from a few tens of minutes, up to an hour), we derived the 2-point Allan Standard Deviation after the atmospheric phase correction using the 183 GHz Water Vapor Radiometer (WVR) installed in each 12 m antenna, and confirmed that the phase stability of all the baselines reached the ALMA specification. Since we applied the WVR phase correction to all the data mentioned above, we also studied the effectiveness of the WVR phase correction at various frequencies, baseline lengths, and weather conditions. The phase stability often improves a factor of 2 - 3 after the correction, and sometimes a factor of 7 improvement can be obtained. However, the corrected data still displays an increasing phase fluctuation as a function of baseline length, suggesting that the dry component (e.g., N2 and O2) in the atmosphere also contributes the phase fluctuation in the data, although the imperfection of the WVR phase correction cannot be ruled out at this moment.Comment: Proc. SPIE 8444-125, in press (7 pages, 4 figures, 1 table

    Large magnetocrystalline anisotropy in tetragonally distorted Heuslers: a systematic study

    Full text link
    With a view to the design of hard magnets without rare earths we explore the possibility of large magnetocrystalline anisotropy energies in Heusler compounds that are unstable with respect to a tetragonal distortion. We consider the Heusler compounds Fe2_2YZ with Y = (Ni, Co, Pt), and Co2_2YZ with Y = (Ni, Fe, Pt) where, in both cases, Z = (Al, Ga, Ge, In, Sn). We find that for the Co2_2NiZ, Co2_2PtZ, and Fe2_2PtZ families the cubic phase is always, at T=0T=0, unstable with respect to a tetragonal distortion, while, in contrast, for the Fe2_2NiZ and Fe2_2CoZ families this is the case for only 2 compounds -- Fe2_2CoGe and Fe2_2CoSn. For all compounds in which a tetragonal distortion occurs we calculate the MAE finding remarkably large values for the Pt containing Heuslers, but also large values for a number of the other compounds (e.g. Co2_2NiGa has an MAE of -2.11~MJ/m3^3). The tendency to a tetragonal distortion we find to be strongly correlated with a high density of states at the Fermi level in the cubic phase. As a corollary to this fact we observe that upon doping compounds for which the cubic structure is stable such that the Fermi level enters a region of high DOS, a tetragonal distortion is induced and a correspondingly large value of the MAE is then observed.Comment: 8 pages, 5 figure

    SMA/PdBI multiple line observations of the nearby Seyfert2 galaxy NGC 1068: Shock related gas kinematics and heating in the central 100pc?

    Full text link
    We present high angular resolution (0.5-2.0") observations of the mm continuum and the 12CO(J=3-2), 13CO(J=3-2), 13CO(J=2-1), C18O(J=2-1), HCN(J=3-2), HCO+(J=4-3) and HCO+(J=3-2) line emission in the circumnuclear disk (r=100pc) of the proto-typical Seyfert type-2 galaxy NGC1068, carried out with the Submillimeter Array. We further include in our analysis new 13CO(J=1-0) and improved 12CO(J=2-1) observations of NGC1068 at high angular resolution (1.0-2.0") and sensitivity, conducted with the IRAM Plateau de Bure Interferometer. Based on the complex dynamics of the molecular gas emission indicating non-circular motions in the central ~100pc, we propose a scenario in which part of the molecular gas in the circumnuclear disk of NGC1068 is radially blown outwards as a result of shocks. This shock scenario is further supported by quite warm (Tkin>=200K) and dense (nH2=10^4cm^-3) gas constrained from the observed molecular line ratios. The HCN abundance in the circumnuclear disk is found to be [HCN]/[12CO]=10^-3.5. This is slightly higher than the abundances derived for galactic and extragalactic starforming/starbursting regions. This results lends further support to X-ray enhanced HCN formation in the circumnuclear disk of NGC1068, as suggested by earlier studies. The HCO+ abundance ([HCO+]/[12CO]=10^-5) appears to be somewhat lower than that of galactic and extragalactic starforming/starbursting regions. When trying to fit the cm to mm continuum emission by different thermal and non-thermal processes, it appears that electron-scattered synchrotron emission yields the best results while thermal free-free emission seems to over-predict the mm continuum emission.Comment: accepted for publication by ApJ; 35pages, 22 figures and 6 tables (at the end of the file); 3 figures have been decreased in quality to match size limi

    Computed Tomography Appearance of Hem-O-Lok Clips in Patients Who Have Undergone Laparoscopic Nephrectomy or Nephroureterectomy

    Get PDF
    Hem-O-Lok clips are radiopaque on computed tomography in patients who have undergone laparoscopic nephrectomy and nephroureterectomy

    Magnetic Properties of 2-Dimensional Dipolar Squares: Boundary Geometry Dependence

    Full text link
    By means of the molecular dynamics simulation on gradual cooling processes, we investigate magnetic properties of classical spin systems only with the magnetic dipole-dipole interaction, which we call dipolar systems. Focusing on their finite-size effect, particularly their boundary geometry dependence, we study two finite dipolar squares cut out from a square lattice with Φ=0\Phi=0 and π/4\pi/4, where Φ\Phi is an angle between the direction of the lattice axis and that of the square boundary. Distinctly different results are obtained in the two dipolar squares. In the Φ=0\Phi=0 square, the ``from-edge-to-interior freezing'' of spins is observed. Its ground state has a multi-domain structure whose domains consist of the two among infinitely (continuously) degenerated Luttinger-Tisza (LT) ground-state orders on a bulk square lattice, i.e., the two antiferromagnetically aligned ferromagnetic chains (af-FMC) orders directed in parallel to the two lattice axes. In the Φ=π/4\Phi=\pi/4 square, on the other hand, the freezing starts from the interior of the square, and its ground state is nearly in a single domain with one of the two af-FMC orders. These geometry effects are argued to originate from the anisotropic nature of the dipole-dipole interaction which depends on the relative direction of sites in a real space of the interacting spins.Comment: 21 pages, 13 figures, submitted to Journal of Physical Society Japa

    On the disappearance of a cold molecular torus around the low-luminosity active galactic nucleus of NGC 1097

    Full text link
    We used the Atacama Large Millimeter/submillimeter Array (ALMA) to map the CO(3-2) and the underlying continuum emissions around the type 1 low-luminosity active galactic nucleus (LLAGN; bolometric luminosity 1042\lesssim 10^{42} erg~s1^{-1}) of NGC 1097 at 10\sim 10 pc resolution. These observations revealed a detailed cold gas distribution within a 100\sim 100 pc of this LLAGN. In contrast to the luminous Seyfert galaxy NGC 1068, where a 7\sim 7 pc cold molecular torus was recently revealed, a distinctively dense and compact torus is missing in our CO(3-2) integrated intensity map of NGC 1097. Based on the CO(3-2) flux, the gas mass of the torus of NGC 1097 would be a factor of 23\gtrsim 2-3 less than that found for NGC 1068 by using the same CO-to-H2_2 conversion factor, which implies less active nuclear star formation and/or inflows in NGC 1097. Our dynamical modeling of the CO(3-2) velocity field implies that the cold molecular gas is concentrated in a thin layer as compared to the hot gas traced by the 2.12 μ\mum H2_2 emission in and around the torus. Furthermore, we suggest that NGC 1097 hosts a geometrically thinner torus than NGC 1068. Although the physical origin of the torus thickness remains unclear, our observations support a theoretical prediction that geometrically thick tori with high opacity will become deficient as AGNs evolve from luminous Seyferts to LLAGNs.Comment: 9 pages, 5 figures. Accepted for publication in ApJ

    Lagrangian fibrations of holomorphic-symplectic varieties of K3^[n]-type

    Full text link
    Let X be a compact Kahler holomorphic-symplectic manifold, which is deformation equivalent to the Hilbert scheme of length n subschemes of a K3 surface. Let L be a nef line-bundle on X, such that the 2n-th power of c_1(L) vanishes and c_1(L) is primitive. Assume that the two dimensional subspace H^{2,0}(X) + H^{0,2}(X), of the second cohomology of X with complex coefficients, intersects trivially the integral cohomology. We prove that the linear system of L is base point free and it induces a Lagrangian fibration on X. In particular, the line-bundle L is effective. A determination of the semi-group of effective divisor classes on X follows, when X is projective. For a generic such pair (X,L), not necessarily projective, we show that X is bimeromorphic to a Tate-Shafarevich twist of a moduli space of stable torsion sheaves, each with pure one dimensional support, on a projective K3 surface.Comment: 34 pages. v3: Reference [Mat5] and Remark 1.8 added. Incorporated improvement to the exposition and corrected typos according to the referees suggestions. To appear in the proceedings of the conference Algebraic and Complex Geometry, Hannover 201
    corecore