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1 Introduction
Let C be a nonempty closed convex subset of a real Banach space E and let T be a non-
expansive mapping defined on C, that is, ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. Denote by
Fix(T) the set of fixed points of T ; that is, Fix(T) = {x ∈ C : Tx = x}.
In general, the domain of T is a proper subset of E. In this case, some iterative algo-

rithms associated with T may not be well defined. Therefore, it is interesting to find some
conditions under which the algorithms considered are well defined.
Recently, the problemof approximating fixed points for nonexpansive nonself-mappings

has been paid much attention to by many authors, see [–]. Moreover, in [], Song and
Chen introduced two iterativemethods (one is implicit and the other is explicit) and estab-
lished the strong convergence of such twomethods in certain Banach spaces, if T satisfies
the weakly inward condition and Fix(T) �= ∅. Further, in [], Matsushita and Takahashi
introduced a new condition (.). They proved the following. (i) If T satisfies the weakly
inward condition, then T satisfies the condition (.). (ii) If E is a strictly convex Banach
space, T : C → E is a nonexpansive mapping such that Fix(T) �= ∅ and C is a sunny non-
expansive retract of E, then T satisfies the condition (.). (iii) If T satisfies the condi-
tion (.), then Fix(T) = Fix(QT), where Q is a sunny nonexpansive retraction from E
onto C. Using these results, they proved two strong convergence theorems for nonexpan-
sive nonself-mappings in certain Banach spaces without any boundary conditions.
We remark in the passing that the convergence theorems of Song and Chen [] are not

applicable to lp and Lp for any p ∈ (, ) ∪ (,∞). Although the convergence theorems of
Matsushita and Takahashi [] work in the Banach spaces of lp and Lp for all p > , they
could not be used to find the minimum-norm fixed point of the underlying mappings in a
Hilbert space. Moreover, the proof lines of Theorem . in [] are really long.
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Our concern now is the following.
() Can one present an indirect and simple method for proving Theorem . of

Matsushita and Takahashi []?
() Can one extend Theorem . to both the more general Banach spaces and the more

broad Meir-Keeler contractions?
() Can one improve the main results of [] so that new convergence theorems hold

true under less assumptions?
The purpose of this paper is to study and solve all problems mentioned above by im-

proving and generalizing several recent results. Several new iterative schemes are intro-
duced and several strong convergence theorems are established by using new analysis
techniques.

2 Preliminaries
Let E be a real Banach space and let E∗ be the dual of E. Denote by 〈·, ·〉 the duality product.
A Banach space E is said to be strictly convex if ‖ x+y

 ‖ <  for all x, y ∈ E with ‖x‖ = ‖y‖ =
 and x �= y. It is also said to be uniformly convex if limx→∞ ‖xn – yn‖ =  for any two
sequences {xn}, {yn} in E such that ‖xn‖ = ‖yn‖ =  and limx→∞ ‖xn + yn‖ = . Let U = {x ∈
E : ‖x‖ = } be the unit sphere of E. The norm of E is said to be Gâteaux differentiable if
the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x, y ∈U . Such an E is called a smooth Banach space. The norm of a Banach
space E is said to be uniformly Gâteaux differentiable if for each y in U , the limit of (.)
is attained uniformly for x in U . The norm of E is said to be Fréchet differentiable if for
each x ∈U , the limit of (.) is attained uniformly for y ∈ U . The norm of E is also said to
be uniformly Fréchet differentiable if the limit of (.) is attained uniformly for x, y ∈U . In
this case, E is called a uniformly smooth Banach space. The normalized duality mapping
J from E into E∗ is defined by

Jx =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖ = ∥∥x∗∥∥}

for each x ∈ E. The duality mapping J has the following basic properties; see [, ] for
details.

Proposition .
() ‖x‖ – ‖y‖ ≥ 〈x – y, j〉 for each x, y ∈ E and j ∈ Jy.
() If E is smooth, then J is single valued.
() If E is smooth, then J is norm-to-weak∗ continuous.
() If E has a uniformly Gâteaux differentiable norm, then J is norm-to-weak∗

uniformly continuous on bounded sets of E.
() If the norm of E is (uniformly) Fréchet differentiable, then it is (uniformly) Gâteaux

differentiable.
() If Banach space E is uniformly smooth, then J is norm-to-norm uniformly

continuous on bounded sets of E.
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Recall that a mapping T : C → E is said to satisfy the weakly inward condition [, ] if
Tx ∈ cl IC(x) for all x ∈ C, where

IC(x) =
{
y ∈ E : y = x + a(u – x),u ∈ C,a≥ 

}

and cl IC(x) denotes the closure of the set IC(x).

Remark . (i) C ⊂ IC(x) for all x ∈ C;
(ii) if x is an interior of C, then IC(x) = E;
(iii) if C is a convex subset of E, then IC(x) is also convex and

IC(x) =
{
y ∈ E : y = x + a(u – x),u ∈ C,a≥ 

}
;

(iv) if both f : C → E and g : C → E satisfy the weakly inward condition, then so does a
convex combination of f and g .

Let D be a subset of C and letQ be a mapping from C to D. ThenQ is said to be sunny if
Q(Qx+ t(x–Qx)) =QxwheneverQx+ t(x–Qx) ∈ C for x ∈ C and t ≥ . AmappingQ from
C into itself is said to be a retraction if Q =Q. A set D is said to be a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C into D [, ]. It is very
well known that if E is a smooth Banach space and C is a nonempty closed convex subset
of E, then there exists at most one sunny nonexpansive retraction Q from E onto C. In a
Hilbert space H , there exists a unique sunny nonexpansive retraction PC :H → C.

Proposition . Let C be a nonempty convex subset of a real smooth Banach space E,
D ⊂ C and Q : C →D a retraction. Then the following statements are equivalent:
() Q is both sunny and nonexpansive;
() 〈x –Qx, j(y –Qx)〉 ≤  for all x ∈ C and y ∈D;
() 〈x – y, j(Qx –Qy)〉 ≥ ‖Qx –Qy‖ for all x, y ∈ C.

Let Q be a sunny nonexpansive retraction from E to C. Define a set

Sx = {y ∈ E : y �= x,Qy = x}

for x ∈ C. A nonself-mapping T : C → E is said to satisfy the Matsushita-Takahashi con-
dition (MT condition, for short) if

Tx ∈ SCx (.)

for all x ∈ C, where SCx denotes the complementary set of Sx. If E is a Hilbert space, then
the MT condition is equivalent to the nowhere-normal outward condition introduced by
Matsushita and Kuroiwa [].
Matsushita and Takahashi [] proved the following interesting results.

Proposition . Let C be a closed convex subset of a smooth Banach space E and let T be
amapping from C into E. Suppose that C is a sunny nonexpansive retract of E. If T satisfies
the weakly inward condition, then T satisfies the MT condition.
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Proposition . Let C be a closed convex subset of a strictly convex Banach space E and
let T be a mapping from C into E. Suppose that C is a sunny nonexpansive retract of E. If
Fix(T) �= ∅, then T satisfies the MT condition.

Proposition . Let C be a closed convex subset of a smooth Banach space E and let T be
amapping form C into E. Suppose that C is a sunny nonexpansive retract of E. If T satisfies
the MT condition, then

Fix(T) = Fix(QT),

where Q is the unique sunny nonexpansive retraction from E onto C.

By a careful observation, we have the following more rich and nice result.

Lemma . Let C be a closed convex subset of smooth Banach space E and let T be a
mapping form C into E. Suppose that C is a sunny nonexpansive retract of E. If T satisfies
the MT condition, then

Fix(T) = Fix(QT) = Fix(TQ),

where Q is the unique sunny nonexpansive retraction form E onto C.

Proof The first ‘=’ follows from Proposition .. Now we prove that second ‘=’ holds. As-
sume that x = TQx; then

Qx = (QT)(Qx),

which shows thatQx ∈ Fix(QT). In view of Proposition ., Fix(QT) = Fix(T), thus, we get
x = TQx =Qx, which turns out that x = Tx. The converse inclusion relation that ‘Fix(T) ⊂
Fix(TQ)’ is obvious, consequently, Fix(T) = Fix(TQ). The proof is completed. �

Remark . The fact that Fix(T) = Fix(TQ) is very important. By virtue of this fact, we
can invent and create some novel argument methods for strong convergence of the some
kinds of iterative algorithms.

Let (X,d) be a metric space and C a subset of X. Recall that a mapping � : C → C is
called a Meir-Keeler contraction (MKC for short) [], if for arbitrary ε > , there exists
δ >  such that

d(x, y) < ε + δ ⇒ d(�x,�y) < ε. (.)

In [], Meir and Keeler proved the following interesting fixed point theorem.

Theorem MK Let (X,d) be a complete metric space and let � be a MKC on X. Then �

has a unique fixed point in X.

Remark . If C is a nonempty closed (convex) subset of a complete metric space (X,d),
then the conclusion of TheoremMK is still true.

http://www.fixedpointtheoryandapplications.com/content/2014/1/61
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The following results can be found in [].

Proposition . Let E be a Banach space C a convex subset of E, and � : C → C a MKC.
Then ∀ε > , there exists γ ∈ (, ) such that

∥∥�(x) –�(y)
∥∥ ≤ γ ‖x – y‖ (.)

for all x, y ∈ C with ‖x – y‖ ≥ ε.

Proposition . Let C be a nonempty convex subset of a Banach space E, T : C → C a
nonexpansive mapping and � : C → C a MKC. Then

(i) T� and �T : C → C are all Meir-Keeler contractions;
(ii) ∀t ∈ (, ), define a mapping Tt : C → C by

Tt(x) = ( – t)Tx + t�x, x ∈ C,

then Tt is a MKC.

Remark . When � is not a self-mapping, then conclusion of (i) is still true, provided
that T� or �T is well defined. The conclusion of (ii) holds true for nonself-mappings T
and �.

Proposition . Let C be a nonempty closed convex subset of a reflexive and strictly convex
Banach space E, whose norm is uniformly Gâteaux differentiable. Let T : C → C be a non-
expansive mapping with Fix(T) = ∅ and � : C → C aMKC. Then the following statements
are true:

(i) ∀t ∈ (, ], there exists a unique continuous path {xt} such that

xt = t�xt + ( – t)Txt , t ∈ (, ], (.)

further, as t → , {xt} converges strongly to a fixed point z of T , which solves the
following variational inequality:

(VI)
〈
(I –�)z, j(y – z)

〉 ≥ , ∀y ∈ Fix(T),

(ii) for arbitrary initial data x ∈ C, a sequence {xn} is generated by

xn+ = αn�xn + ( – αn)Txn, n≥ , (.)

where {αn} is a real sequence satisfying conditions:
(C) αn → ; (C)

∑∞
n= αn =∞; and (C)

∑∞
n= |αn+ – αn| < ∞ or αn

αn+
→ 

(n→ ∞).
Then {xn} converges strongly to the same point z as in (i).

Let C be a nonempty closed convex subset of a Banach space E, � : C → E a MKC and
T : C → E a nonexpansive mapping. Let Q be a sunny nonexpansive retraction form E
onto C. For each t ∈ (, ), the mapping t� + ( – t)T is a MKC by Proposition .(ii), and

http://www.fixedpointtheoryandapplications.com/content/2014/1/61
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hence the mapping Q[t� + ( – t)T] is a MKC by Proposition .(i). Then the fixed point
Theorem MK ensures that for each t ∈ (, ), there exists a unique element xt ∈ C such
that

xt =Q
[
t�(xt) + ( – t)T(xt)

]
, (.)

which inspires us to consider the following discrete iterative sequence {xn}:

x ∈ C, xn+ =Q
[
αn�(xn) + ( – αn)Txn

]
, n≥ , (.)

where {αn} is a real sequence that satisfies certain conditions.
We also consider a variant of (.):

λ ∈ (, ),x ∈ C, xn+ = λxn + ( – λ)Q
[
αn�(xn) + ( – αn)Txn

]
, n≥ , (.)

where {αn} is a real sequence that satisfies less restriction.We shall prove that the path de-
fined by (.) and the sequences defined by (.) and (.), respectively, converge strongly
to a fixed point of T which solves variational inequality (VI).
In order to achieve the objective above, we cite the following known results; see [].

Proposition . Let E be a Banach space, {xn} and {yn} two bounded sequences in E that
satisfy the relation:

xn+ = λnxn + ( – λn)yn, n≥ ,

where {λn} is a real sequence satisfying  < limn λn ≤ limn λn < . Then xn – yn →  (n →
∞).

Proposition . Let {an} be a nonnegative real sequence that satisfies inequality:

an+ ≤ ( – tn)an + o(tn), n≥ ,

where {tn} is a real sequence in (, ) satisfying conditions (i) tn →  and (ii)
∑∞

n= tn = ∞.
Then an →  (n→ ∞).

3 Main results
Theorem . Let C be a nonempty closed convex subset of a reflexive and strictly con-
vex Banach space E whose norm is uniformly Gâteaux differentiable. Let T : C → E be a
nonexpansive mapping with Fix(T) �= ∅ and � : C → E a MKC. Suppose also that C is a
sunny nonexpansive retract of E and let Q be the unique sunny nonexpansive retraction
from E onto C. Then the path {xt} defined by (.) converges strongly to z which solves the
variational inequality

(VI)
〈
(I –�)z, j(y – z)

〉 ≥ , ∀y ∈ Fix(T),

equivalently, z =QFix(T)�(z), where QFix(T) : E → Fix(T) is the unique sunny nonexpansive
retraction from E onto Fix(T).

http://www.fixedpointtheoryandapplications.com/content/2014/1/61
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Proof Set yt = t�(xt) + ( – t)T(xt). Then (.) reduces to xt =Qyt and

yt = t(�Q)yt + ( – t)(TQ)yt . (.)

Write f =�Q and V = TQ. Then (.) reduces to

yt = tf (yt) + ( – t)V (yt). (.)

In view of Proposition .(i), we know that f : E → E is a MKC on E and V : E → E is
a nonexpansive mapping on E. From Proposition .(i), we conclude that {yt} converges
strongly to a fixed point z of (TQ), which solves the variational inequality:

〈
(I – f )z, j(y – z)

〉 ≥ , ∀y ∈ Fix(TQ). (.)

It follows from Proposition . that T satisfies the MT condition.
By virtue of Lemma ., we have Fix(TQ) = Fix(T), which implies that z ∈ C and hence

Qz = z, which gives

f (z) = �Q(z) = �(z). (.)

Consequently, yt → z ∈ Fix(T), and xt → z which solves the variational inequality (VI)

〈
(I –�)z, j(y – z)

〉 ≥ , ∀y ∈ Fix(T),

which is equivalent to z =QFix(T)�(z) by Proposition .. �

Theorem . Let C be a nonempty closed convex subset of a reflexive and strictly con-
vex Banach space E, whose norm is uniformly Gâteaux differentiable. Let T : C → E be
a nonexpansive mapping with Fix(T) �= ∅ and � : C → E a MKC. Suppose also that C is
a sunny nonexpansive retract of E and let Q be the unique sunny nonexpansive retraction
from E onto C. Let {αn} be a real sequence satisfying conditions (C), (C), and (C) given
in Proposition .. Then the sequence {xn} defined by (.) converges strongly to z which
solves the variational inequality (VI)

〈
(I –�)z, j(y – z)

〉 ≥ , ∀y ∈ Fix(T).

Proof Set yn = αn�(xn) + ( – αn)T(xn). Then (.) reduces to xn+ =Qyn and

yn+ = αn+(�Q)yn + ( – αn+)(TQ)yn. (.)

Write βn = αn+, g =�Q and U = TQ. Then (.) reduces to

yn+ = βng(yn) + ( – βn)U(yn). (.)

In view of Proposition .(i), g : E → E is a MKC on E and U : E → E is a nonexpansive
mapping on E. Obviously, {βn} satisfies the conditions (i) βn → ; (ii)

∑∞
n= βn =∞; and

http://www.fixedpointtheoryandapplications.com/content/2014/1/61
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(iii)
∑∞

n= |βn+ – βn| < ∞ or βn
βn+

→  (n → ∞). By Proposition .(ii), we conclude that
{yn} converges strongly a fixed point of z ofU = TQ, which solves the variational inequality:

〈
(I – g)z, j(y – z)

〉 ≥ , ∀y ∈ Fix(U). (.)

In view of Lemma ., we know that z = TQz = Tz, which implies that z ∈ C and hence
Qz = z, which yields g(z) = �(z).
Consequently, {yn}, and hence {xn}, converges strongly to z ∈ Fix(T) which solves the

variational inequality (VI):

〈
(I –�)z, j(y – z)

〉 ≥ , ∀y ∈ Fix(T).

The proof is completed. �

Remark . Theorem . improves and generalizes Theorem . due to Song and Chen
[]; Theorem . improves and generalizes Theorem . due to Song and Chen [] and
Theorem . due to Matsushita and Takahashi []. We point out that our method of ar-
gumentation is much simpler than the ones used by Song and Chen [], and Matsushita
and Takahashi [].

In order to establish the strong convergence of (.), we first consider a special case of
(.):

Fixλ ∈ (, ),x ∈ C,∀u ∈ C, xn+ = λxn + (–λ)Q
[
αnu+ (–αn)Txn

]
, n≥ . (.)

Theorem . Let C be a nonempty closed convex subset of a reflexive and strictly convex
Banach space E, whose norm is uniformly Gâteaux differentiable. Let T : C → E be a non-
expansive mapping with Fix(T) �= ∅. Suppose also that C is a sunny nonexpansive retract
of E and let Q be the unique sunny nonexpansive retraction from E onto C. Let {αn} be
a sequence satisfying conditions (C) αn →  and (C)

∑∞
n= αn = ∞. Then the sequence

{xn} defined by (.) converges strongly to a fixed point z of T , which solves the following
variational inequality:

〈
z – u, j(y – z)

〉 ≥ , ∀y ∈ Fix(T).

Proof We split the proof into four steps.
Step . {xn} is bounded.
Indeed, set yn =Q[αnu + ( – αn)T(xn)], and take a fixed point p ∈ Fix(T). Then we have

‖xn+ – p‖ ≤ λ‖xn – p‖ + ( – λ)‖yn – p‖
≤ λ‖xn – p‖ + ( – λ)

[
αn‖u – p‖ + ( – αn)‖xn – p‖]

=
[
 – ( – λ)αn

]‖xn – p‖ + ( – λ)αn‖u – p‖
≤ max

{‖x – p‖,‖u – p‖} =M

for all n ≥ , hence {xn} is bounded, so is {Txn}.

http://www.fixedpointtheoryandapplications.com/content/2014/1/61
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Step . xn – yn →  (n→ ∞).
Observe that

‖yn+ – yn‖ =
∥∥Q

[
αn+u + ( – αn+)Txn+

]
–Q

[
αnu + ( – αn)Txn

]∥∥

≤ ∥∥(αn+ – αn)u + ( – αn+)Txn+ – ( – αn)Txn
∥∥

≤ ‖xn+ – xn‖ + |αn+ – αn|
(‖u‖ + ‖Txn‖

)

≤ ‖xn+ – xn‖ +M|αn+ – αn|

for some positive constantM.
We have

lim
n

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

By virtue of Proposition ., we claim that xn – yn →  (n→ ∞).
Step . limn〈u–z, j(xn–z)〉 ≤ , where z =QFix(T)u, andQFix(T) : C → Fix(T) is the unique

sunny nonexpansive retraction from C onto Fix(T), which is guaranteed by Theorem ..
Notice that

‖yn –QTxn‖ ≤ αn
(‖u‖ + ‖Txn‖

)

≤ Mαn → ,

and ‖xn – yn‖ → , we have

‖xn –QTxn‖ ≤ ‖xn – yn‖ + ‖yn –QTxn‖ → .

For t ∈ (, ), let {xt} be the path defined by

xt = tu + ( – t)QTxt .

Since QT : C → C is a nonexpansive self-mapping, using Theorem  of Morales and
Jung [], we see that {xt} converges strongly to z ∈ Fix(QT) = Fix(T) by Lemma . as
t → , where z =QFix(T)u. Using Lemma . of Song et al. [], we conclude that

lim
n

〈
u – z, j(xn – z)

〉 ≤ . (.)

Step . xn → z (n→ ∞).
By using the definition of {yn} and Proposition .(), we have

‖yn – z‖ = ∥∥Q
[
αnu + ( – αn)Txn

]
–Qz

∥∥

≤ 〈
αn(u – z) + ( – αn)(Txn – z), j(yn – z)

〉

= αn
〈
u – z, j(yn – z)

〉
+ ( – αn)

〈
Txn – z, j(yn – z)

〉

≤ αn
〈
u – z, j(yn – z)

〉
+
 – αn


‖Txn – z‖ +  – αn


‖yn – z‖

≤ αn
〈
u – z, j(yn – z)

〉
+
 – αn


‖xn – z‖ +  – αn


‖yn – z‖,

http://www.fixedpointtheoryandapplications.com/content/2014/1/61
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from which one derives

‖yn – z‖ ≤ ( – αn)‖xn – z‖ + αn
〈
u – z, j(yn – z)

〉
. (.)

By virtue of (.), (.), and the convexity of ‖ · ‖, we have

‖xn+ – z‖

≤ λ‖xn – z‖ + ( – λ)‖yn – z‖

≤ λ‖xn – z‖ + ( – λ)( – αn)‖xn – z‖ + ( – λ)αn
〈
u – z, j(yn – z)

〉

=
[
 – ( – λ)αn

]‖xn – z‖ + ( – λ)αn
〈
u – z, j(yn – z)

〉

=
[
 – ( – λ)αn

]‖xn – z‖ + ( – λ)αn
〈
u – z, j(xn – z)

〉

+ ( – λ)αn
〈
u – z, j(yn – z) – j(xn – z)

〉

≤ [
 – ( – λ)αn

]‖xn – z‖ + ( – λ)αnσn + en, (.)

where σn = max{, 〈u – z, j(xn – z)〉} and en = ( – λ)αn〈u – z, j(yn – z) – j(xn – z)〉. It is
easily to see that σn ≥  and σn →  (n → ∞) in view of step . Now we shall show that
en = o(αn). Indeed, from step , we know that {xn – z} and {yn – z} are bounded. By step ,
yn – xn = (yn – z) – (xn – x)→ , it follows from Proposition .() that

〈
u – z, j(yn – z) – j(xn – z)

〉 → ,

and hence en = o(αn). Consequently, (.) reduces to

‖xn+ – z‖ ≤ [
 – ( – λ)αn

]‖xn – z‖ + o(αn). (.)

Set an = ‖xn – z‖, tn = ( – λ)αn. Then (.) reduces to

an+ ≤ ( – tn)an + o(tn),

where {tn} satisfies condition (i) tn → ; and (ii)
∑∞

n= tn =∞. By Proposition ., we con-
clude that an →  (n→ ∞), i.e., xn → z (n→ ∞). This completes the proof. �

Now we prove the strong convergence of (.).

Theorem . Let E be a real reflexive and strictly convex Banach space whose norm is
uniformly Gâteaux differentiable, let C be a nonempty closed convex subset of E, let T be
a nonexpansive mapping from C into E with Fix(T) �= ∅ and let � : C → C be a MKC.
Suppose that C is a sunny nonexpansive retract of E. Let {αn} be a real sequence such that
 ≤ αn ≤ , αn →  and

∑∞
n= αn =∞. Let λ ∈ (, ) and x ∈ C. Suppose that {xn} is given

by (.). Then {xn} converges strongly to z ∈ Fix(T) which solves the variational inequality
(VI):

〈
(I –�)z, j(y – z)

〉 ≥ , ∀y ∈ Fix(T).
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Proof By Proposition .(i), we know thatQFix(T)� : C → C is aMKConC. It follows from
TheoremMK, QFix(T)� has a unique fixed point z in C, i.e., z =QFix(T)�(z).
Let y ∈ C and define a sequence {yn} by

yn+ = λyn + ( – λ)Q
[
αn�(z) + ( – αn)Tyn

]
, n≥ . (.)

From Theorem ., we assert that

yn → z =QFix(T)�(z),

where z ∈ Fix(T) which solves the variational inequality (VI):

〈
(I –�)z, j(y – z)

〉 ≥ , ∀y ∈ Fix(T).

We shall prove that xn – yn →  as n→ ∞.
Assume that a = limn‖xn – yn‖ > ; then ∀ε > , ε < a, we can choose η >  such that

lim
n

‖xn – yn‖ > ε + η. (.)

For above ε > , using Proposition ., we know that there exists γ ∈ (, ) such that

‖�x –�y‖ ≤ γ ‖x – y‖ (.)

for all x, y ∈ C with ‖x – y‖ ≥ ε, which implies that

‖�x –�y‖ ≤max
{
γ ‖x – y‖, ε} (.)

for all x, y ∈ C.
Since yn → z as n → ∞, we see that there exists some n ≥  such that

‖yn – z‖ ≤ ( – γ )η (.)

for all n ≥ n.
We now consider two possible cases.
Case . There exists some ν ≥ n such that

‖xv – yv‖ ≤ ε + η. (.)

By using (.), (.), (.), and (.), we have

‖xv+ – yv+‖
≤ λ‖xv – yv‖ + ( – λ)

[
αv‖�xv –�z‖ + ( – αv )‖xv – yv‖

]

=
[
 – ( – λ)αv

]‖xv – yv‖ + ( – λ)αv‖�xv –�z‖
≤ [

 – ( – λ)αv
]‖xv – yv‖ + ( – λ)αv‖�xv –�yv‖

+ ( – λ)αv‖�yv –�z‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/61
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≤ [
 – ( – λ)αv

]‖xv – yv‖ + ( – λ)αv max
{
γ ‖xv – yv‖, ε

}

+ ( – λ)αv‖yv – z‖
≤max

{[
 – ( – γ )( – λ)αv

]
ε + ( – γ )( – λ)αvη,

[
 – ( – λ)αv

]
ε + ( – λ)αv (ε + η)

}

≤ ε + η.

Similarly, we have

‖xv+ – yv+‖ ≤ ε + η.

By induction, we have

‖xv+m – yv+m‖ ≤ ε + η

for allm ≥ , which implies that

lim
n

‖xn – yn‖ ≤ ε + η,

which contradicts with (.). Consequently, xn – yn → , and hence xn → z ∈ Fix(T)
which solves the variational inequality (VI).
Case . ‖xn – yn‖ > ε + η for all n≥ v.
We shall prove that case  is impossible. Suppose case  holds true. By (.), we have

‖�xn –�yn‖ ≤ γ ‖xn – yn‖ (.)

for all n ≥ v.
By using (.), (.), and (.), we have

‖xn+ – yn+‖
≤ λ‖xn – yn‖ + ( – λ)

[
αn‖�xn –�z‖ + ( – αn)‖xn – yn‖

]

≤ [
 – ( – λ)αn

]‖xn – yn‖ + ( – λ)αn‖�xn –�yn‖ + ( – λ)αn‖yn – z‖
≤ [

 – ( – γ )( – λ)αn
]‖xn – yn‖ + o(αn),

from which one derives

xn – yn → ,

in view of Proposition ., and hence  ≥ ε+η, a contradiction, thus, case  is impossible.
The proof is completed. �

Remark . We do not know whether the conclusion of Theorem . holds true when
� : C → E is a nonself-MKC. However, in the case where E is a Hilbert space, it is true.
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Applying Theorems .-. to a Hilbert spaceH , we can obtain new strong convergence
theorems, which improve and generalize the corresponding results by Matsushita and
Kuroiwa [], and Zhou et al. [].

Theorem . Let H be a real Hilbert space, let C be a nonempty closed convex subset of
H , let T be a nonexpansive mapping from C into H with Fix(T) �= ∅ and let � : C → H be
a MKC. Then the conclusions of Theorems .-. hold true.

4 Concluding remarks
This work contains our contribution dedicated to developing and improving the viscos-
ity approximation methods for finding fixed points of nonexpansive nonself-mappings.
Anovel and remarkable finding is contained in Lemma., that is, Fix(T) = Fix(TQ), which
makes it possible to invent a novel and simple method of argumentation for establishing
strong convergence theorems. We have introduced our modified viscosity approximation
methods for finding fixed points of nonexpansive nonself-mappings. Applying our main
results to a Hilbert space, we have drawn the corresponding conclusions announced by
some authors.
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