14,281 research outputs found

    DIRBE Minus 2MASS: Confirming the CIRB in 40 New Regions at 2.2 and 3.5 Microns

    Full text link
    With the release of the 2MASS All-Sky Point Source Catalog, stellar fluxes from 2MASS are used to remove the contribution due to Galactic stars from the intensity measured by DIRBE in 40 new regions in the North and South Galactic polar caps. After subtracting the interplanetary and Galactic foregrounds, a consistent residual intensity of 14.69 +/- 4.49 kJy/sr at 2.2 microns is found. Allowing for a constant calibration factor between the DIRBE 3.5 microns and the 2MASS 2.2 microns fluxes, a similar analysis leaves a residual intensity of 15.62 +/- 3.34 kJy/sr at 3.5 microns. The intercepts of the DIRBE minus 2MASS correlation at 1.25 microns show more scatter and are a smaller fraction of the foreground, leading to a still weak limit on the CIRB of 8.88 +/- 6.26 kJy/sr (1 sigma).Comment: 25 pages LaTeX, 10 figures, 5 tables; Version accepted by the ApJ. Includes minor changes to the text including further discussion of zodiacal light issues and the allowance for variable stars in computing uncertainties in the stellar contribution to the DIRBE intensitie

    Three-Dimensional Evolution of the Parker Instability under a Uniform Gravity

    Get PDF
    Using an isothermal MHD code, we have performed three-dimensional, high-resolution simulations of the Parker instability. The initial equilibrium system is composed of exponentially-decreasing isothermal gas and magnetic field (along the azimuthal direction) under a uniform gravity. The evolution of the instability can be divided into three phases: linear, nonlinear, and relaxed. During the linear phase, the perturbations grow exponentially with a preferred scale along the azimuthal direction but with smallest possible scale along the radial direction, as predicted from linear analyses. During the nonlinear phase, the growth of the instability is saturated and flow motion becomes chaotic. Magnetic reconnection occurs, which allows gas to cross field lines. This, in turn, results in the redistribution of gas and magnetic field. The system approaches a new equilibrium in the relaxed phase, which is different from the one seen in two-dimensional works. The structures formed during the evolution are sheet-like or filamentary, whose shortest dimension is radial. Their maximum density enhancement factor relative to the initial value is less than 2. Since the radial dimension is too small and the density enhancement is too low, it is difficult to regard the Parker instability alone as a viable mechanism for the formation of giant molecular clouds.Comment: 8 pages of text, 4 figures (figure 2 in degraded gif format), to appear in The Astrophysical Journal Letters, original quality figures available via anonymous ftp at ftp://ftp.msi.umn.edu/pub/users/twj/parker3d.uu or ftp://canopus.chungnam.ac.kr/ryu/parker3d.u

    Continuum-discretized coupled-channels method for four-body breakup reactions

    Full text link
    Development of the method of CDCC (Continuum-Discretized Coupled-Channels) from the level of three-body CDCC to that of four-body CDCC is reviewed. Introduction of the pseudo-state method based on the Gaussian expansion method for discretizing the continuum states of two-body and three-body projectiles plays an essential role in the development. Furthermore, introduction of the complex-range Gaussian basis functions is important to improve the CDCC for nuclear breakup so as to accomplish that for Coulomb and nuclear breakup. A successful application of the four-body CDCC to 6^6He+12^{12}C scattering at 18 and 229.8 MeV is reported.Comment: Latex file of revtex4 class, 14 pages, 10 figures. A talk given at the Workshop on Reaction Mechanisms for Rare Isotope Beams, Michigan State University, March 9-12, 2005 (to appear in an AIP Conference Proceedings

    Irradiation-energy Dependence on the Spectral Changes of Hydrous C-Type Asteroids Based on 4kev and 20kev He Exposure Experiments of Murchison Cm Chondrite

    Get PDF
    C-type asteroid 162173 Ryugu was observed by remote sensing apparatus onboard Hayabusa2 spacecraft and found to be very dark object whose reflectance is (1.60 0.15) % at 0.55m and showed a small 2.7m absorption band indicative of phyllosilicates. The optical navigation camera detected color variations of Ryugus surface in the wavelength range from 0.4 to 0.95m: Bluer spectra are ob-served at both poles and on the equatorial ridge, both of which are topographic highs and thus may be fresh material exposed by gradual erosion. On the other hand, many locations at middle-latitude areas exhibit redder and darker colors. Similar color variations are also detected in the near-infrared wavelength range. These observations suggest that a surface-correlated process is responsible for the color variation, most prob-ably from blue to red, but the mechanism for the change is not yet identified. Space weathering is one possible mechanism responsible for the color variation, but the spectral changes of C-type asteroids from space weathering are far from being fully understood. Past experimental studies using hydrous carbonaceous chondrites such as Murchison and Tagish Lake show that He exposure (simulating solar wind irradiation) changes spectra to bluer and brighter. Recently our He exposure experiments indicate that spectral changes depend on physical properties such as porosity of exposed material. In this study, we per-formed further He exposure experiments using Murchison CM chondrite in order to understand energy dependence on the spectral changes. We found that He energy is a critical parameter, as well as physical properties of the samples, that affects spectral changes of space weathering of hydrated C-type asteroids

    Robustly Unstable Eigenmodes of the Magnetoshearing Instability in Accretion Disk

    Get PDF
    The stability of nonaxisymmetric perturbations in differentially rotating astrophysical accretion disks is analyzed by fully incorporating the properties of shear flows. We verify the presence of discrete unstable eigenmodes with complex and pure imaginary eigenvalues, without any artificial disk edge boundaries, unlike Ogilvie & Pringle(1996)'s claim. By developing the mathematical theory of a non-self-adjoint system, we investigate the nonlocal behavior of eigenmodes in the vicinity of Alfven singularities at omega_D=omega_A, where omega_D is the Doppler-shifted wave frequency and omega_A=k_// v_A is the Alfven frequency. The structure of the spectrum of discrete eigenmodes is discussed and the magnetic field and wavenumber dependence of the growth rate are obtained. Exponentially growing modes are present even in a region where the local dispersion relation theory claims to have stable eigenvalues. The velocity field created by an eigenmode is obtained, which explains the anomalous angular momentum transport in the nonlinear stage of this stability.Comment: 11pages, 11figures, to be published in ApJ. For associated eps files, see http://dino.ph.utexas.edu/~knoguchi

    On Witten multiple zeta-functions associated with semisimple Lie algebras IV

    Full text link
    In our previous work, we established the theory of multi-variable Witten zeta-functions, which are called the zeta-functions of root systems. We have already considered the cases of types A2A_2, A3A_3, B2B_2, B3B_3 and C3C_3. In this paper, we consider the case of G2G_2-type. We define certain analogues of Bernoulli polynomials of G2G_2-type and study the generating functions of them to determine the coefficients of Witten's volume formulas of G2G_2-type. Next we consider the meromorphic continuation of the zeta-function of G2G_2-type and determine its possible singularities. Finally, by using our previous method, we give explicit functional relations for them which include Witten's volume formulas.Comment: 22 pag

    Single crystal growth and physical properties of a new uranium compound URhIn5_5

    Get PDF
    We have grown the new uranium compound URhIn5_5 with the tetragonal HoCoGa5_5-type by the In self flux method. In contrast to the nonmagnetic ground state of the isoelectronic analogue URhGa5_5, URhIn5_5 is an antiferromagnet with antiferromagnetic transition temperature TNT_{\rm N} = 98 K. The moderately large electronic specific heat coefficient γ\gamma = 50 mJ/K2^2mol demonstrates the contribution of 5ff electrons to the conduction band. On the other hand, magnetic susceptibility in the paramagnetic state roughly follows a Curie-Weiss law with a paramagnetic effective moment corresponding to a localized uranium ion. The crossover from localized to itinerant character at low temperature may occur around the characteristic temperature 150 K where the magnetic susceptibility and electrical resistivity show a marked anomaly.Comment: 7 pages, 7 figure

    Improvement of stabilizer based entanglement distillation protocols by encoding operators

    Full text link
    This paper presents a method for enumerating all encoding operators in the Clifford group for a given stabilizer. Furthermore, we classify encoding operators into the equivalence classes such that EDPs (Entanglement Distillation Protocol) constructed from encoding operators in the same equivalence class have the same performance. By this classification, for a given parameter, the number of candidates for good EDPs is significantly reduced. As a result, we find the best EDP among EDPs constructed from [[4,2]] stabilizer codes. This EDP has a better performance than previously known EDPs over wide range of fidelity.Comment: 22 pages, 2 figures, In version 2, we enumerate all encoding operators in the Clifford group, and fix the wrong classification of encoding operators in version

    Spontaneous Hall effect in chiral p-wave superconductor

    Get PDF
    In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force from spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, non-universal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(e k_F\lambda)^2, where k_F is the Fermi wave vector and \lambda is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.Comment: 22 pages including 12 figure

    Spectral properties of a spin-incoherent Luttinger Liquid

    Full text link
    We present time-dependent density matrix renormalization group (DMRG) results for strongly interacting one dimensional fermionic systems at finite temperature. When interactions are strong the characteristic spin energy can be greatly suppressed relative to the characteristic charge energy, allowing for the possibility of spin-incoherent Luttinger liquid physics when the temperature is high compared to the spin energy, but small compared to the charge energy. Using DMRG we compute the spectral properties of the tJt-J model at arbitrary temperatures with respect to both spin and charge energies. We study the full crossover from the Luttinger liquid regime to the spin-incoherent regime,focusing on small J/tJ/t, where the signatures of spin-incoherent behavior are more manifest. Our method allows us to access the analytically intractable regime where temperature is of the order of the spin energy, TJT\sim J. Our results should be helpful in the interpretation of experiments that may be in the crossover regime, TJT\sim J, and apply to one-dimensional cold atomic gases where finite-temperature effects are appreciable. The technique may also be used to guide the development of analytical approximations for the crossover regime.Comment: 7 pages, 5 figure
    corecore