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Spontaneous Hall effect in a chiralp-wave superconductor
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2Department of Physics, Shizuoka University, Shizuoka 422-8529, Japan
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In a chiral superconductor with broken time-reversal symmetry a ‘‘spontaneous Hall effect’’ may be ob-
served. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor.
We identify two main contributions to the spontaneous Hall effect. One contribution originates from the
Bernoulli ~or Lorentz! force due to spontaneous currents running along the surfaces of the superconductor. The
other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs.
The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the
superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral
superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-
consistent solution of the Bogoliubov–de Gennes equation, a generalized Ginzburg-Landau theory, and a
hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous
Hall resistance of a two-dimensional superconducting Hall bar is of orderh/(ekFl)2, wherekF is the Fermi
wave vector andl is the London penetration depth; the Hall resistance is substantially suppressed from a
quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.

DOI: 10.1103/PhysRevB.64.054514 PACS number~s!: 74.25.Fy, 74.25.Nf, 74.20.De, 74.70.Pq

I. INTRODUCTION

Unconventional superconductivity appears with a large
variety of possible phases displaying many properties that
are not shared by conventionals-wave superconductors.
These phases are characterized by their symmetry properties,
and in most cases not only the U~1!-gauge symmetry but
other symmetries are also spontaneously broken. Interesting
physics emerges, in particular, when time-reversal symmetry
T is violated in a superconductor. Volovik and Gor’kov have
classified such superconducting states into two categories,
the so-called ‘‘ferromagnetic’’ and the ‘‘antiferromagnetic’’
states.1 They are distinguished by the internal angular mo-
mentum of Cooper pairs. In the ferromagnetic state the Coo-
per pairs possess either a finite orbital or~for nonunitary
states! spin moment, while in the antiferromagnetic
state they have no net moments. Examples of these two
types of states were recently discussed in connection with
high-temperature superconductors; the so-calleddx22y2

1 idxy-wave state represents a ferromagnetic pairing state,
while the dx22y21 is-wave state is antiferromagnetic. In
high-temperature superconductors aT-violating state is most
likely to be realized only near surfaces or interfaces at very
low temperatures.2–4 Among the heavy fermion supercon-
ductors there are two well-known systems which have
T-violating bulk superconducting phases: UPt3 and
U12xThxBe13 (0.017,x,0.45). These materials show su-
perconducting double transitions, andT violation is associ-
ated with the second of the two transitions.5 A more recent
candidate forT-violating superconductivity is Sr2RuO4,6 a
layered perovskite compound. Experimentally, Sr2RuO4
shows clear features of a strongly correlated quasi-two-
dimensional Fermi liquid above the onset temperature of su-
perconductivityTc51.5 K. It was suggested7 that, since this
system in the normal state behaves as a two-dimensional
analogue to3He, the superconducting phase would corre-

spond to the superfluidA phase, which is a well-known
T-violating pairing state.8–10 Indeed, the experimental
evidence11,12 for unconventional superconductivity in
Sr2RuO4 is consistent with the basic order parameter
symmetry11–13

d~k!5 ẑD
kx6 iky

kF
, ~1.1!

a p-wave~spin-triplet! state. Here we have used the standard
notation of thed vector to represent the order parameter of
the triplet state8 D̂(k)5 id(k)•ssy, wheres i are the Pauli
matrices. Thed vector ~1.1! pointing along thez direction
implies that the spin part of the Cooper pair wave function is
the spin-triplet state withSz50, i.e., in-plane equal-spin
pairing ~the z direction is along thec axis of Sr2RuO4). In a
system with cylindrical symmetry the orbital part of the pair
wave function is a state with finite angular momentum along
the z axis Lz561. Obviously the state represented by Eq.
~1.1! is ‘‘ferromagnetic,’’ and is also called chiralp-wave
state.

The chirality of this superconducting state is characterized
by a topological numberN defined by9,10

N5
1

4pE2`

`

dkxE
2`

`

dkym̂•S ]m̂

]kx
3

]m̂

]ky
D . ~1.2!

The unit vectorm̂(kx ,ky) is

m̂5
m

umu
, m5~Redz ,Im dz ,ek!, ~1.3!

whereek5(kx
21ky

2)/2m2m is the kinetic energy measured
from the chemical potentialm. ~Throughout this paper we
will assume the cylindrical symmetry whenever microscopic
modeling is necessary, although the inclusion of crystal field
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effects is straightforward. Note that, being topological, the
numberN can be defined without resorting to the cylindrical
symmetry.! The topological numberN corresponds to the
multiplicity of the wrapping of a sphereS2 in the mapping of
R2ø$`%.S2 to anotherS2 representing the unit vectorm̂.
The vectorm does not vanish at anyk, allowing us to define
the topological numberN uniquely. In the chiralp-wave state
~1.1! the topological numberN is either11 or 21 depend-
ing on the chirality of the state or the orbital angular momen-
tum.

A chiral superconductor has gapless chiral edge modes at
interfaces between states of opposite chiralities~domain
walls! or between a chiral state and a vacuum~surface!, as
dictated by the index theorem. Volovik pointed out10 that the
topological invariantN determines the number of gapless
edge modes per spin at a boundary between different states.10

This yields 2uN12N2u such modes at the interface of two
domains characterized by the topological numbersN1 and
N2, respectively. At an interface between a chiralp-wave
state and a vacuum we find two modes~one per spin!. These
states can be easily understood in terms of Andreev bound
states.14–17Recent point contact experiments provide the first
indication for these states at the surface of Sr2RuO4.18

The presence of gapless chiral edge modes is reminiscent
of quantum Hall fluids. One can thus expect a chiral super-
conductor to have a Hall effect. This is a spontaneous Hall
effect ~SHE! in the sense that a transverse voltage appears in
response to an external current even without an external
magnetic field applied to the superconductor.9 The Hall con-
ductance is not quantized, however, contrary to a naive anal-
ogy. This is because the electric current can be carried as a
supercurrent by superconducting condensate or, in other
words, the local charge density is not a conserved quantity in
a superconductor.19–21In fact, it has been shown20–22that the
spin and the thermal Hall conductance are quantized to the
topological numberN in appropriate units. Even though it is
nonuniversal, the spontaneous~charge! Hall effect is inter-
esting in its own right because it is an effect which can be
experimentally measured, in principle. Thus we would like
to investigate in detail in this paper the origin and magnitude
of the effect. To this end, it is necessary to understand what
one would actually measure in an experiment trying to ob-
serve the SHE. Computing a diagram for the current-current
correlation function in a bulk superconductor does not give a
proper solution to this problem. On the contrary, we have to
understand physics near a surface of a chiral superconductor,
taking into account issues such as~1! the spatial variation of
the order parameter near the surface,~2! the spontaneous
current running along the surface of the chiral supercon-
ductor, and~3! screening effects for both magnetic field and
electric field in the superconductor. We study the surface
properties using three different approaches: a numerical self-
consistent analysis of the Bogoliubov–de Gennes~BdG!
equation, an extended Ginzburg-Landau~GL! theory with a
scalar potential, and a phenomenological hydrodynamic for-
mulation. We find that there are two basic contributions to
the SHE. The first is the Bernoulli force due to spontaneous
currents which flow near the surface. They are the conse-
quence of the chiral surface states, but can also be under-

stood in terms of a transverse order parameter textures. Natu-
rally they lead to a Hall response. The second originates
from the intrinsic magnetic moment of the Cooper pairs in
the chiralp-wave state. The former contribution is present in
both chiral and nonchiral superconductors, since both can
have spontaneous surface currents, while the latter contribu-
tion exists only in chiral superconductors. We therefore con-
clude that even a nonchiral~antiferromagnetic! T-violating
superconductor can have a SHE.

The organization of this paper is as follows. In Sec. II we
introduce a simple microscopic model for the chiralp-wave
superconductor and solve the BdG equation self-consistently
at zero temperature. In Sec. III we present the extended GL
theory and derive basic equations. They are used in Sec. IV
to analyze the SHE nearTc . In Sec. V we present parameters
appearing in the extended GL theory obtained from a micro-
scopic weak-coupling analysis. The GL theory is the basis to
formulate an effective hydrodynamical theory presented in
Sec. VI, which allows us to interpret and estimate the SHE in
a simple way distinguishing the two contributions mentioned
above. In Sec. VII we also demonstrate the SHE in the non-
chiral s1 id-wave state by the numerical BdG approach. The
results are summarized in Sec. VIII.

II. SELF-CONSISTENT BOGOLIUBOV-DE GENNES
ANALYSIS

A. Model formulation

We consider a chiralp-wave superconductor in which en-
ergy band and order parameter have no momentum depen-
dence in thez direction. We may thus treat the system as if it
is two dimensional. The starting point of our analysis is a
mean-field Hamiltonian for a two-dimensional spin-triplet
superconductor withdi ẑ. The Hamiltonian is given byHMF
5*dx*dyHMF with the Hamiltonian density

HMF5(
s

cs
†~r!h0~r!cs~r!1

1

g
uh~r!u2

2
i

2kF
$h~r!•@c↓

†~r!¹c↑
†~r!1c↑

†~r!¹c↓
†~r!#

1h* ~r!•@c↓~r!¹c↑~r!1c↑~r!¹c↓~r!#%, ~2.1!

h0~r!5
1

2m F2 i\¹1
e

c
A~r!G2

2m2eA0~r!, ~2.2!

wherecs is the annihilation operator of electron with spin
s5↑,↓, g is the coupling constant of the attractive interac-
tion that is responsible forp-wave pairing (g.0), and ¹
5(]x ,]y). The superconducting order parameter should sat-
isfy the ~self-consistence! gap equation, obtained from
(d/dh* )^HMF&50,

h5~hx ,hy!5
ig

2kF
^c↑~r!@¹c↓~r!#2@¹c↑~r!#c↓~r!&.

~2.3!
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We are interested in systems with boundaries in which the
order parameterh depends onr5(x,y). The uniform system
with d given in Eq.~1.1! corresponds to the caseh5D(1,
6 i ).

The equations of motion for the fieldcs are i\] tcs

5@cs ,HMF#. Substitutingc↑5ue2 i et/\ and c↓
†5ve2 i et/\

into them, we arrive at the BdG equation

h0~r!un~r!2
i

2kF
@h •¹vn1¹•~vnh!#5enun~r!,

~2.4a!

2h0* ~r!vn~r!2
i

2kF
@h* •¹un1¹•~unh* !#5envn~r!.

~2.4b!

The wave functions are normalized in two dimensions:
*dx*dy(uunu21uvnu2)51. When (un ,vn) is an eigenfunc-
tion with energyen , (vn* ,un* ) is an eigenstate with energy
2en . With these eigenfunctions the field operators are ex-
panded as

S c↑~r,t !

c↓
†~r,t !D 5 (

en>0
S un vn*

vn un* D S gn↑e2 i ent/\

gn↓
† ei ent/\ D . ~2.5!

The ground stateu0& satisfiesgnsu0&50.
Gapless chiral edge modes are present at boundaries of a

chiral p-wave superconductor. To illustrate this within our
model, it is sufficient to solve the BdG equation with a sim-
plified gap function with step-function form, h
5Q(x)D(1,i«), whereQ(x) is the Heaviside step function
and «561 is the chirality of the condensate. The self-
consistent solution of the BdG equation will be presented in
the next subsection. The bound state solution to Eq.~2.4!
with energy eigenvaluee5Dsinu (2p/2,u,p/2) and with
boundary conditionun5vn50 at x50 is given by

S uu~r!

vu~r!D 5A 2

j0Ly
expS 2

x

j0
1 i«kFysinu D sin~kFx cosu!

3S eip/4

e2 ip/4D , ~2.6!

where Ly is a linear scale of the superconductor in
y-direction. We have used the Andreev approximation valid
for D!m. The amplitude of the edge state decays in the bulk
on the lengthj05\vF /D. With the wave number in they
direction ky5«kF sinu, the energy dispersion of the chiral
edge mode ise(ky)5«Dky /kF .

We now calculate current carried by the chiral edge mode
at zero temperature. The current densityJ is defined as

Ji52c
d

dAi
E d2rHMF

52e(
s

H \

2im
@cs

†~] ics!2~] ics
† !cs#1

e

mc
Aics

†csJ ,

~2.7!

where the fieldscs are expanded as in Eq.~2.5!. At this level
a finite contribution comes only from the edge mode~2.6!.
Thus, we may restrict the summation over the eigenstates to
0,u,p/2. The total charge current running along the edge
is given by

I y5E
0

`

dx^0uJyu0&

52
e\

m E
0

`

dxIm^0uc↑
†]yc↑1c↓

†]yc↓u0&

52
2e\

m

kFLy

2p E
0

1

d~sinu!E
0

`

dx Im~vu]yvu* !5
«em

2p\
,

~2.8!

where we have setA50, ignoring the vector potential in-
duced by the spontaneous current, i.e., diamagnetic screening
currents. The currentI y is spontaneously running along the
edge of the chiralp-wave superconductor. If the chemical
potential could be shifted by a constant asm→m1eV in
some way, then the spontaneous current would change by
«e2V/h. From this simple-minded argument it is tempting to
conclude a universal value of the Hall conductance. This
argumentation is invalid, because both the superconducting
condensate and the edge states carry current and, further-
more, the constant shift of the chemical potential is not real-
istic to describe a Hall measurement. Indeed a careful analy-
sis of the physics of the superconductor surface region is
necessary as we will demonstrate below.

B. Solution for Hall bar geometry

In this section we study the transverse voltage induced by
an externally driven current by solving the BdG equations
~2.4! self-consistently for a system with Hall bar geometry.
We model the Hall bar by a two-dimensional system of
width Lx in the x direction and lengthLy in the y direction.
The currents run along they direction, in which we impose
the periodic boundary conditions. The superconducting state
with the symmetry of the chiralp-wave state is parametrized
by h5(Dx ,iDy), whereDx and Dy are real functions ofr.
The calculation is done for zero temperature.

In the Hall bar geometry it is convenient to use the fol-
lowing two basis sets of wave functions

S csin~k,r!

ccos~k,r!D 5A 2

LxLy
eikyyS sinkxx

coskxxD , ~2.9!

whereky52lp/Ly andkx5mp/Lx ( l ,m: integer! by setting
either the wave function or its first derivative to zero atx
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50 andLx . We solve the problem twice:~i! with the Dirich-
let boundary condition atx50 andLx and~ii ! with the Neu-
mann boundary condition. Afterwards we take the average of
both solutions in order to remove unphysically rapid changes
of the electron density at the surface. Expandingun(r) and
vn(r) as

S un~r!

vn~r!D 5(
k
S ũn~k!

ṽn~k!D csin,cos~k,r!, ~2.10!

we can solve the gap equation numerically by diagonaliza-
tion. The order parameter is determined self-consistently
from the gap equation~2.3! for T50

~Dx ,iDy!5
ig

2kF
(

En.0
@un~r!¹vn* ~r!2vn* ~r!¹un~r!#,

~2.11!

where the coupling constantg is chosen to giveDx5Dy
5D0 in a bulk chiral p-wave superconductor. Thus,g is
obtained by solving the gap equation

1

g
5

1

~4pkF!2E d2k
k2

Aek
21~D0k/kF!2

5
m

8p\2E2vc

vc
de

11e/m

Ae21D0
2~11e/m!

5
m

8p\2
~ I 11I 2!,

~2.12!

wherevc is a cutoff energy and

I 15E
2vc

vc
de

1

Ae21D0
2~11e/m!

5 lnU 2vc1D0
2/m12Avc

21D0
2~11vc /m!

22vc1D0
2/m12Avc

21D0
2~12vc /m!

U ,
I 25

1

mE2vc

vc
de

e

Ae21D0
2~11e/m!

5
1

m FAvc
21D0

2S 11
vc

m D2Avc
21D0

2S 12
vc

m D G
2

D0
2I 1

2m2
.

The solutions to the BdG equation~2.4! determine the
electron density and current density

ne~r!52 (
En.0

uvn~r!u2, ~2.13a!

Jy~r!5
ie\

m (
En.0

Fvn~r!
]vn* ~r!

]y
2vn* ~r!

]vn~r!

]y G
2

e2

mc
ne~r!Ay~r!, ~2.13b!

where only they component of the current is nonvanishing in
the Hall bar geometry. Note that these densities are defined
in two dimensions because of the normalization condition
imposed onun andvn . The scalar and vector potentials obey
the Maxwell equations

¹2A0~r!52
4pe

d
@nb2ne~r!#, ¹2Ay~r!52

4p

cd
Jy~r!.

~2.14!

We have introduced the lengthd to convert the area densities
into the volume densities. Physicallyd corresponds to the
spacing between two-dimensional layers in Sr2RuO4. To
keep overall charge neutrality, we introducenb as the density
of the uniform positive background charge~jellium model!.
The externally injected currentI fixes the boundary condi-
tions for the vector potential

]Ay

]x U
x50

52
]Ay

]x U
x5Lx

5
2p

cd
I . ~2.15!

The self-consistent order parameters, scalar and vector po-
tentials can be obtained numerically by solving Eqs.~2.4!,
~2.11!, and~2.14! iteratively until convergence is reached. In
the iteration step we fix the total number of electrons to the
normal state value by adjustingm. In the self-consistent so-
lution electric charge is screened on the Thomas-Fermi
length scalel 5(\2d/4e2m)1/2. Since we have three material-
dependent parametersD0 , kF , and d, we have freedom to
change three dimensionless parameterskFj0 , l/j0, andl /j0.

C. Discussion of the self-consistent solution

The solutions of the BdG equation reveal that the relevant
physics of the Hall bar indeed happens at the two surfaces.
First we consider the solution for the case where total current
along they direction is zero. The order parameter varies
strongly at the surface:Dx is suppressed whileDy rises
slightly as shown in Fig. 1~a!. This behavior is connected
with the reflection properties of Cooper pairs at the surface.
Resulting interference effects are destructive forDx , since
the order parameter is odd under reflection at a surface nor-
mal to thex direction. Note that this order parameter varia-
tion is specific for a specular reflection at the surface and
would look different for the case of diffuse scattering. We do
not, however, consider this aspect here further.

At the surface the chiral edge states appear with a linear
dispersion around the Fermi energy. These are Andreev
bound states as a direct consequence of the chirality of the
superconducting state. The two branches seen in Fig. 1~b!
belong each to one of the two edges of the bar. These chiral
edge states generate spontaneous currents at the surface
flowing alongn3 ẑ (n: surface normal vector!. The currents
on the two edges of the Hall bar run in opposite directions,
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thereby no net current is flowing in the Hall bar. The edge
currents generate a magnetic field, which is screened by
counter currents in the interior of the superconductor@Fig.
1~c!#. The length scale of the surface current is the coherence
lengthj0 while the screening currents spread over the Lon-
don penetration depthl. The surface magnetic fields gener-
ate a finite magnetization whose sign depends on the sign of
Cooper pair angular momentum and the sign of the charge,
i.e., electronlike or holelike Fermi surface.

Turning now to the question of the scalar potential and the
charge distribution in the superconductor, we find again that
all interesting features show up only in the surface region.
There is a finite excess charge at the surface, which is
screened due to Thomas-Fermi screening. As a result the
charge density forms a dipole layer and is overall charge
neutral. This is the constraint that we have imposed by fixing
the external electrical field to zero~note that in our Hall bar
geometry a finite charge or equivalently a finite external
electric field would correspond to an infinite field energy,
since the capacitance is zero!. The dipole layer induces
a local electric field and causes a shift of the scalar potential
relative to its value in the bulk of the superconductor
which we choose to be zero. The charge distributions
and potential at the surface are the same on both sides of the
bar.

Under the assumption that the Hall bar is symmetric about
x5Lx/2, there is no potential difference between the two
sides. We would like to mention that scalar potential varia-
tions close to the surface are not unique to chiral supercon-
ducting states, but occur in any superconductor whose order
parameter is influenced by surface scattering.

If we introduce a net current driven from an external
source, this external current will be distributed equally to
both surfaces@see Fig. 2~a!#. This affects the surface states
differently for the two sides, because on one side the external
current flows with the spontaneous current, on the other
against it. Furthermore, the scalar potential is not equal any-
more at the two sides because the charge dipole layers are
modified differently, as we can see in Fig. 2~b!. This trans-
verse voltage difference depends on the orientation of the
external current and appears in the absence of an external
magnetic field.

Our calculation clearly shows a linear relation between
the source currentI and the transverse voltageVH as ex-
pected for the Hall effect. Deviations occur only when the
current approaches the critical value where the order param-
eter starts to be strongly affected by the current. In Fig. 3 we
show thek, l, andkFj0 dependences of the Hall resistance
RH5VH /I . What is immediately obvious is that the Hall
resistance is strongly suppressed from the quantum unit of
resistanceR05h/2e2. There is also a strong dependence on
the material dependent parameters, indicating that the behav-
ior is nonuniversal. Unfortunately, in the numerical BdG
scheme we are limited in the choice ofl, j0 , l, andkF

21 ,
because large difference in their magnitudes demands large-
scale computation. In the next section we study the SHE
using the extended GL theory which will allow us to calcu-
late RH analytically for temperatures close toTc . We can
already here confirm that the quantitative comparison be-
tween the two methods works very well. It will also become
clear that there are a few contributions to the transverse volt-
age.

FIG. 1. Self-consistent solu-
tion of the Bogoliubov–de
Gennes equation of the
px1 ipy-wave state atT50. The
set of parameters are chosen as
j05\vF /D0 , kFj0516, vc

58D0 , k5l/j051, l 50.25j0,
and Lx5Ly520j0. ~a! Order pa-
rameter scaled byD0, which is the
magnitude of the order parameter
in the bulk region.~b! Energy ei-
genvalues obtained for sine basis
functions.L andR denote the sur-
face bound states localized near
x50 and x5Lx , respectively.
States with uEnu.D0 are ex-
tended. Unit ofky is 2p/Ly . ~c!
Dimensionless vector potentialay

5(ej0 /\c)Ay , magnetic fieldbz

5j0]xay , and current densityj y

52j0]xbz . ~d! Dimensionless
scalar potential a05eA0 /D0,
electric field ex52j0]xa0, and
charge densityr5j0]xex .
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III. GINZBURG-LANDAU FORMULATION

We formulate an extended Ginzburg-Landau theory based
on symmetry arguments which includes the scalar and vector
potentials in a general form. This allows us to analyze the
anomalous coupling between charge and magnetic degrees of
freedom in chiral superconductors.

A. Ginzburg-Landau free energy

The paring symmetry of the chiralp-wave superconduct-
ing state is characterized byd(k)5 ẑD(kx6 iky)/kF , which is
a combination of the two degeneratep-wave components
with px andpy symmetry. This degeneracy is not lifted when
we introduce a tetragonal crystal field, although the details of
the k dependence ofd may change. The twofold degeneracy
requires that we introduce two complex order parameter
componentsh5(hx ,hy), such that thed vector becomes
d(k)5 ẑ(h•k)/kF . The free energy has to be a scalar under
the transformations of the symmetry group

G5D4h3T 3U~1!, ~3.1!

where the tetragonal point groupD4h includes the simulta-
neous transformation of orbital and spin degree of freedom
as a consequence of spin-orbit coupling,T denotes the time-

reversal symmetry and U~1! the gauge symmetry. The GL
free energy expansion forh with the symmetryG is well
known:23 F5*d3rF, where

F5ah•h* 1b1~h•h* !21
b2

2
~hx*

2hy
21hx

2hy*
2!

1b3uhxu2uhyu21K1~ uDxhxu21uDyhyu2!

1K2~ uDxhyu21uDyhxu2!1K3@~Dxhx!* ~Dyhy!1c.c.#

1K4@~Dxhy!* ~Dyhx!1c.c.#1K5~ uDzhxu21uDzhyu2!

1
~¹3A!2

8p
. ~3.2!

The coefficientsa, bi , andKi are nonuniversal real numbers
that depend on the details of the material. The coefficienta is
negative belowTc (a}T2Tc). For the choice 0,b2,4b1
1b3 and b3,b2, we find the homogeneous phaseh
5h0(1,6 i ) with h0

2(T)5uau/(4b12b21b3). The gradient
terms are explicitly gauge invariant by the definitionD5¹
1 i (2e/\c)A. Equation~3.2! is the standard free energy den-
sity used to study the response to the magnetic field with the
Coulomb gauge¹•A50.

As is well known,24 the intrinsic orbital angular momen-
tum in a chiralp-wave state is related to the difference of the
two terms with coefficientsK3 andK4:

FIG. 2. Self-consistent solution of the Bogoliubov–de Gennes
equation atT50 when currentI 55eD0 /\kFj0 is externally sup-
plied. Set of parameters are the same as used in Fig. 1.~a! Dimen-
sionless vector potential, magnetic field, and current density.~b!
Dimensionless scalar potential, electric field, and charge density.

FIG. 3. ~a! k dependence of the Hall resistance. Within the same
kFj0, the three lines from the top correspond tol 50.1j0 , l
50.25j0, and l 50.5j0, respectively.~b! l dependence of the Hall
resistance. Within the samekFj0, three lines from the top corre-
spond tok51, k51.5, andk52, respectively. In both figures the
Hall resistanceR is scaled byR05h/2e2.
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~Dxhx!* Dyhy2~Dxhy!* Dyhx1c.c.

5F¹3~hx* Dhy2hy* Dhx!

1 i
2e

\c
~hy* hx2hx* hy!¹3AG

z

, ~3.3!

where it is understood that thez component of a three-
dimensional vector is kept in the right-hand side. The inte-
gral of the first term gives a surface term which we may

discard, while the second term represents the Zeeman energy
of a magnetic moment coming from the intrinsic angular
moment (} i h3h* ).

For our purpose it is essential to include additional
terms that are coupled to either the scalar potentialA0
or the electric fieldE52¹A0. We consider the stationary
situation and fix the gauge so thatA0 is zero in the undis-
turbed homogeneous superconductor. It is more convenient
to use the Lagrangian formulation, in which the Maxwell
equations simply follow from variation with respect toAm .
The Lagrangian density involving the scalar potential is
given by

Le5K̃1A0~ uDxhxu21uDyhyu2!1K̃2A0~ uDxhyu21uDyhxu2!1K̃3A0@~Dxhx!* ~Dyhy!1~Dxhx!~Dyhy!* #

1K̃4A0@~Dxhy!* ~Dyhx!1~Dxhy!~Dyhx!* #1K̃5A0~ uDzhxu21uDzhyu2!1C1@Exhx* ~Dxhx!1Eyhy* ~Dyhy!1c.c.#

1C2@Exhy* ~Dxhy!1Eyhx* ~Dyhx!1c.c.#1C3@Exhx* ~Dyhy!1Eyhy* ~Dxhx!1c.c.#

1C4@Exhy* ~Dyhx!1Eyhx* ~Dxhy!1c.c.#1C5@Ezhx* ~Dzhx!1Ezhy* ~Dzhy!1c.c.#2
~¹A0!2

8p
2

A0
2

8p l 2
~3.4!

with K̃ i ,Ci , and l being real numbers. The coefficients will
be derived for the weak-coupling limit in Sec. V. In this form
it is easy to verify that each term is individually invariant.
The term A0

2/8p l 2 describes the screening of the electric
charge in the metallic and superconducting state, wherel is
the Thomas-Fermi screening length. The choice of this form
fixes A0 to zero in the bulk of the superconductors, which
corresponds to the chemical potential as required by our
choice of gauge. We emphasize thatLe1F plays a role of
the Lagrangian density forAm .

We notice that theK̃ i terms are closely related with theKi
terms. On the other hand, theCi terms have no relatives in
Eq. ~3.2!. The difference of theC3 andC4 terms contains a
contribution i (hxhy* 2hyhx* )(Ax]yA02Ay]xA0). It de-
scribes a coupling between the scalar and the vector poten-
tials and is similar to the Chern-Simons~CS! term. Since the
fields are static, however, it is not exactly the same as the CS
term. Thus we shall call it a CS-like term. It can also be

interpreted as representing a coupling between the intrinsic
magnetic moment (} i h3h* ) and the magnetic field in the
presence of an electric field. In other words, the CS-like term
describes the reaction of the intrinsic magnetic moment to a
change in the Cooper pair density.25 The CS-like term pro-
portional toC32C4 will play an essential role in the SHE, in
addition to others.

B. Equations for the electromagnetism

We derive equations describing the electromagnetic prop-
erties of the superconductor from variation of*d3r (Le1F)
with respect toA0 andA. The equation for the scalar poten-
tial has the form

2¹2A01
A0

l 2
54p@r̃2¹•~P1P!#, ~3.5!

where

r̃5K̃1~ uDxhxu21uDyhyu2!1K̃2~ uDxhyu21uDyhxu2!1K̃3@~Dxhx!* ~Dyhy!1~Dxhx!~Dyhy!* #

1K̃4@~Dxhy!* ~Dyhx!1~Dxhy!~Dyhx!* #1K̃5~ uDzhxu21uDzhyu2!, ~3.6a!

P52S ]x~C1uhxu21C2uhyu2!1 1
2 ~C31C4!]y~hx* hy1hxhy* !

]y~C1uhyu21C2uhxu2!1 1
2 ~C31C4!]x~hx* hy1hxhy* !

C5]zuhu2
D , ~3.6b!
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P5 1
2 ~C32C4!S hy* Dyhx1hyDy* hx* 2hx* Dyhy2hxDy* hy*

hx* Dxhy1hxDx* hy* 2hy* Dxhx2hyDx* hx*

0
D . ~3.6c!

The two terms on the left-hand side of Eq.~3.5! describe the
screening of the electric field. The quantityr̃ is the charge
density induced by variations of the order parameter. The
vector densityP represents the electric polarization caused
by inhomogeneities of the superconducting condensate. Both
r̃ and P appear as a consequence of the fact that the local
change in the condensate, both in the order parameter and in
the supercurrent, leads to a redistribution of the electric
charge. This is most easily seen inr̃, which is related to the
gradient term of the free energy. Note that terms of this kind
are also present in conventional superconductors. On the
other hand, the vector densityP is anomalous and charac-
teristic of chiral superconductors.

For the sake of simplicity we assume that the relative
phase of the order parameter component is fixed, i.e.,hx
5uhxuexp(if) andhy5 i«uhyuexp(if) with «561, where«
is the chirality of thep-wave order parameter. This condition
is satisfied in the situations we will study below. In this case
we havei (hy* hx2hx* hy)52«uhxuuhyu. The vectorP can be
written as

P52«~C32C4!uhxuuhyuS ¹f1
2e

\c
AD3 ẑ. ~3.7!

Its divergence is equivalent to a source charge

rP52¹•P

52
4e

\c
«uhxuuhyuBz~C32C4!

22«~C32C4!~¹uhxuuhyu!3S ¹f1
2e

\c
AD .

~3.8!

The first term indicates that the magnetic fieldB induces the
electric charge whose sign depends on the chirality«. The
second term is nonvanishing only when the modulus of the
order parameter has spatial variation. Terms similar to the
latter also exist inr̃.

The modified London equation is obtained by variation of
*d3r (Le1F) with respect toA:

¹2A1
4p

c
~J1 J̃1Y!50, ~3.9!

where we find three current contributions. The first two,

J52
4e

\ S Im~K1hx* Dxhx1K2hy* Dxhy1K3hx* Dyhy1K4hy* Dyhx!

Im~K1hy* Dyhy1K2hx* Dyhx1K3hy* Dxhx1K4hx* Dxhy!

Im~K5hx* Dzhx1K5hy* Dzhy!
D ~3.10a!

and

J̃52A0

4e

\ S Im~K̃1hx* Dxhx1K̃2hy* Dxhy1K̃3hx* Dyhy1K̃4hy* Dyhx!

Im~K̃1hy* Dyhy1K̃2hx* Dyhx1K̃3hy* Dxhx1K̃4hx* Dxhy!

Im~K̃5hx* Dzhx1K5hy* Dzhy!

D , ~3.10b!

are the supercurrents including the screening currents. The
second one contributes only if the scalar potential deviates
from its bulk valueA050. The last term

Y5 i
2e

\
~C32C4!~hxhy* 2hx* hy!E3 ẑ ~3.10c!

is the anomalous contribution, where the electric field acts as
a source of supercurrent. Note, however, thatY does not

cause dissipation becauseE•Y50. Both anomalous compo-
nentsP andY are proportional to the chirality« and origi-
nate from the CS-like term. We would like to emphasize here
that the presence of the anomalous current contribution does
not affect the standard flux quantization. The currentY
quickly drops to zero inside the superconducting material
because the electrical field is strongly screened. Thus even a
hole containing a net charge would not violate standard flux
quantization.19
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IV. TRANSVERSE VOLTAGE IN THE GL DESCRIPTION

Now we shall study the SHE in a Hall bar geometry on
the level of the extended GL theory. Since we concluded in
the BdG study that the relevant physics lies in the behavior
of the superconductor close to the surface whose influence is
exponentially small in the interior, we concentrate only on
one edge and consider the half-spacex>0. The physics of a
Hall bar of a given widthLx follows in a simple way from
the results obtained for a single edge.

A. The surface state

The boundary conditions for the order parameter are cho-
sen assuming specular surface scattering. For the given ge-
ometry they read

hxux5050 and Dxhyux5050, ~4.1!

implying that there is no current running normal through the
surface.23 We need to consider only thex component of the
electric field and thez component of the magnetic field, both
of which are continuous at the surface and are functions ofx.
It can be easily shown that these boundary conditions are
compatible with the gauge invariance ofFe . The self-
inductanceL and the capacitanceC of our system are taken
to be infinity and zero, respectively, such that net current and
total charge in the system should vanish, unless they are
imposed by external sources. This is important for the choice
of the boundary conditions for the gauge fields.

We present an approximate solution to the GL equation
that captures the essential aspects of the problem. We assume
that the system is in a chiralp-wave state of a single domain
with the chirality«. First we solve the GL equations to de-
termine the spatial dependence of the order parameterh. To
this end we ignore the gauge fieldsAm in the GL equation.
This is allowed because we are looking for a solution in
lowest order int5(Tc2T)/Tc , a small parameter in the
theory. The GL equations forhx5uhxu andhy5 i«uhyu are

K1

d2uhxu

dx2
5auhxu12b1uhxu31~2b12b21b3!uhxuuhyu2,

~4.2a!

K2

d2uhyu

dx2
5auhyu12b1uhyu31~2b12b21b3!uhxu2uhyu.

~4.2b!

To simplify the analysis we consider a special situation
where the coefficientsbi in the GL free energy satisfy the
relation

2b15b22b3 , ~4.3!

which, however, is not satisfied for a cylindrical Fermi sur-
face in the weak-coupling limit~see Sec. V!. Under this con-
dition Eqs.~4.2a! and ~4.2b! have the solution

hx5h0tanhS x

j D , hy5 i«h0 ~4.4!

with h0
25uau/2b1 and the coherence lengthj252K1 /uau.

Note thathx vanishes linearly atx50 whereashy stays con-
stant. If the condition~4.3! is not satisfied,hy deviates
slightly at x&j from the bulk valueh0, but generally does
not vanish atx50, as we have seen in the BdG study. In
general the order parameter shows the following feature: the
component ofh normal to the surface vanishes linearly
while the perpendicular component is only weakly affected.
As the detailed spatial dependence ofh is not important for
our semiquantitative discussion, we will use an approximate
form for hx , instead of Eq.~4.4!, which allows us to proceed
with analytic calculations more easily,

hx5h0~12e2x/j!. ~4.5!

We would like to mention that we have solved the coupled
GL equations for more general cases by numerical means to
confirm that our approximations work very well both quali-
tatively and quantitatively.

Having determined the profile of the order parameter, we
can calculate the distribution of the charge and the spontane-
ous current in the equilibrium state from Eqs.~3.6! and
~3.10!. The equations for the scalar and vector potential have
the following form:

d2A0

dx2
2

A0

l 2
2

«

l 1
~12e2x/j!

dAy

dx
2

«Ay

j l 1l 2
~ l 11 l 2!e2x/j

1
Ay

2

el3~x!
5

4ph0
2

j2
@2C1e2x/j2~4C11K̃1!e22x/j#,

~4.6!

d2Ay

dx2
2

Ay

l2
2

«

l 1
~12e2x/j!

dA0

dx
1

«A0

j l 2
e2x/j2

2A0Ay

el3~x!

52«
e

jl l 4
e2x/j, ~4.7!

where we have introduced parametersl i ( i 51 – 4) that have
dimension of length

1

l 1
5

16peh0
2

\c
~C32C4!, ~4.8a!

1

l 2
5

16peh0
2

\c
K̃3 , ~4.8b!

1

l 3~x!
5

16pe3h0
2

\2c2
@K̃11K̃2~12e2x/j!2#, ~4.8c!

1

l 4
5

16ph0
2lK3

\c
. ~4.8d!

The London penetration depthl is given by

1

l2
5

32pe2h0
2

\2c2
~K11K2!. ~4.9!
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In deriving Eq.~4.7! we have replaced

1

l2 F12
K2

K11K2
~2e2x/j2e22x/j!G

by l22 ignoring the spatial dependence. This approximation
weakly affects a numerical factor in the final expression of
the Hall voltage.

For temperatures close to the onset of superconductivity,
t5(Tc2T)/Tc is a small parameter which allows for a con-
trolled approximation. From the standard temperature depen-
dence ofh0 , j, andl, it is clear that

1

l i
5O~t!. ~4.10!

We first consider the case of vanishing external fields, i.e.,
E5B50 in the vacuum (x,0). This means that the net
charge and current in the superconductor are zero. In this
case the scalar potentialA0

(0) and the vector potentialAy
(0)

obey the boundary conditionsdA0
(0)/dx5dAy

(0)/dx50 at x
50. From Eq. ~4.10! we see thatA0

(0)5O(t2) and Ay
(0)

5O(t1/2) since l 5O(t0) and l !j,l. In lowest order int
we find

Ay
(0)~x!5«

e

l 4

k

k221
~ke2x/l2e2x/j!, ~4.11!

A0
(0)~x!52 l 2H «

l 1
~12e2x/j!

dAy
(0)~x!

dx

1
«

j S 1

l 1
1

1

l 2
D FAy

(0)~x!e2x/j2
l

j
Ay

(0)~0!e2x/ l G
2

1

el3~x!
@Ay

(0)~x!#2

1
4ph0

2

j2 F2C1e2x/j2~4C11K̃1!e22x/j

1
2l

j
~3C11K̃1!e2x/ l G J , ~4.12!

wherek5l/j. This gives the total magnetic flux per length,

F (0)5E
0

`

dxBz~x!52Ay
(0)~0!52«

e

l 4

k

k11
. ~4.13!

Note that the vector potentialAy
(0) is proportional to«

whereas the scalar potential is independent of the chirality.
For both the scalar and the vector potential the London pen-
etration depth constitutes the longest length scale of varia-
tion, because they are coupled together. The charge density
2(1/4p)d2A0

(0)/dx2 has dipolar form as found in the BdG
calculation. The total current density is

j y
(0)52

c

4p

d2Ay
(0)~x!

dx2
5«

ce

4p l 4lj

k

k221
~ke2x/j2e2x/l!,

~4.14!

where the first term is related to the spontaneous current due
to the chiral Andreev bound states, and the second term is
the response of the superconductor, i.e., the screening cur-
rent. Thus the net current is zero in the absence of an exter-
nal magnetic field.

Results obtained for the semi-infinite geometry can be
easily carried over to a Hall bar that extends fromx50 to
x5Lx . When the widthLx of the Hall bar is much larger
than l, the two surfaces are basically disconnected electro-
magnetically. The gauge fields for the Hall bar geometry are
then obtained by combining the contributions from the two
edges. The scalar potential isA0

(0)(x)1A0
(0)(Lx2x), while

the vector potential isAy
(0)(x)2Ay

(0)(Lx2x).

B. Response to external fields

We now consider two cases where a weak external field is
applied to the semi-infinite system. Weak perturbations in-
troduce corrections to the gauge fields,A05A0

(0)1dA0 and
Ay5Ay

(0)1dAy . We would like to obtaindAm in linear re-
sponse to the external perturbation. We can, therefore, lin-
earize the Maxwell equations indAm :

d2dA0

dx2
2

dA0

l 2
2

«

l 1
~12e2x/j!

ddAy

dx
2

«

j S 1

l 1
1

1

l 2
De2x/jdAy

1
2Ay

(0)

el3~x!
dAy50, ~4.15!

d2dAy

dx2
2

dAy

l2
2

«

l 1
~12e2x/j!

ddA0

dx
1

«

j l 2
e2x/jdA0

2
2

el3~x!
~A0

(0)dAy1Ay
(0)dA0!50. ~4.16!

~1! In the first case a weak external magnetic fieldBẑ is
present in the vacuum, which corresponds to a finite net cur-
rent running in they direction. The boundary conditions are
ddA0 /dx50 andddAy /dx5B at x50. In leading orders in
t we obtain

dAy
(1)~x!52lBe2x/l, ~4.17!

dA0
(1)~x!52«Bl2H 1

l 1
Fe2x/l~12e2x/j!1

l

j
e2x/ l G

2kS 1

l 1
1

1

l 2
D S e2x/l2x/j2

l

j
e2x/l2x/ l

2
l

l
e2x/ l D1

2

l 4

k

k221
F l

l 3~x!
e2x/l~ke2x/l

2e2x/j!2
l

l 3~0!
e2x/ l~k21!G J . ~4.18!
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We note that the sign of the scalar potential in linear re-
sponse toB depends on the chirality«.

This result can be used to determine the transverse volt-
age in the Hall bar. We assume that the induced current flows
symmetrically on the two edges. Formally this situation is
realized by applying the fieldBẑ@Q(2x)2Q(x2Lx)#. The
change of the scalar potential isdA0

(1)(x)2dA0
(1)(Lx2x),

leading to a finite transverse voltage across the Hall bar,
VH5A0(Lx)2A0(0)522dA0

(1)(0). Now we canmake con-
nection to the SHE in a two-dimensional system or in a
layered system such as Sr2RuO4, where the system consists
of layers (xy planes! separated by a distanced. The total
current per layerI is related to the external magnetic field by
I 5cdB/2p. From Eq.~4.18! we find

VH5«I
4p l 2

cd F2kS 1

l 1
1

1

l 2
D1

2l

l 3~0!l 4

k

k11G , ~4.19!

where we have kept only the leading terms, which are pro-
portional tot. The parameters entering this expression will
be derived from a microscopic model in the weak-coupling
limit in the next section.

~2! We now turn to the second case where a weak external
electric fieldEx̂ is applied to the superconductor, inducing a
finite surface charge. A similar problem was recently dis-
cussed by Goryo and Ishikawa.19 The boundary conditions
here areddA0 /dx52E andddAy /dx50 atx50. In lowest
orders int we find the solution to Eqs.~4.15! and ~4.16!,

dA0
(2)~x!5Ele2x/ l , ~4.20!

dAy
(2)~x!'2«El2e2x/ l S x12l

l 1j
1

l

l 2j
2

2l

l 3~0!l 4

k

k11D
1«El2e2x/lFkS 1

l 1
1

1

l 2
D2

2l

l 3~0!l 4

k

k11G .
~4.21!

The external electric field changes the local configuration of
electric current and magnetic field in the chiral supercon-
ductor. The induced vector potentialdAy

(2) depends on the
chirality «. The total change in the magnetic flux~per unit
length along they direction at the surface! is

dF52dAy
(2)~0!5«El2F2kS 1

l 1
1

1

l 2
D1

2l

l 3~0!l 4

k

k11G .
~4.22!

Note the similarity between Eqs.~4.19! and~4.22! indicating
that the two phenomena indeed have a common origin.

V. THE WEAK-COUPLING COEFFICIENTS
OF THE GL THEORY

In this section we calculate the coefficients of the GL free
energy in the weak-coupling limit using a model with layers
of two-dimensional electron gas, where electrons are con-
fined in each layer. Furthermore we ignore any spatial varia-
tion of electromagnetic fields in the direction perpendicular
to the layers.

The mean-field Hamiltonian appropriate for the discus-
sion of the chiralp-wave state~1.1! is already given in Eq.
~2.1!. The static electromagnetic fields are governed by

HEM5
d

8p
@~¹3A!22~¹A0!2#, ~5.1!

whered is the distance between the two-dimensional layers.
The sign of the second term was chosen negative so that the
Maxwell equations can be obtained by taking the functional
derivative of*d2r (HMF1HEM) with respect toAm , which
should be viewed as the Lagrangian in imaginary time.

We integrate out the electron fieldscs , andc̄s to obtain
the effective functionalFeff for h andAm :

exp~2Feff /kBT!5E )
s

Dc̄sDcs

3expF2
1

\E0

\/kBT

dtE d2r ~\c̄s] tcs

1H MF1HEM!G , ~5.2!

where the electron field operatorscs(r) and cs
†(r) in HMF

~2.1! are replaced by Grassman fieldscs(r,i t ) andc̄s(r,i t ),
respectively. The GL equations are then obtained by taking
the functional derivative ofFeff with respect toh and Am .
We calculateFeff in powers ofh i andAm up to the orderh i

4 ,
Dih jDkh l , A0Dih jDkh l , and Eih jDkh l in the weak-
coupling limit, uhu!\2kF

2/2m. The calculation is tedious but
straightforward, and only the final result is presented below.
The functionalFeff so obtained has the form

Feff5E d3r ~F1Le!. ~5.3!

The free energy partF, which is defined in Eq.~3.2! as the
free-energy density inthreedimensions, has the standard co-
efficients

a52
t

2
N~0!, ~5.4a!

b1

3
5

b2

2
52

b3

2
5

7z~3!N~0!

128~pkBTc!
2

, ~5.4b!

K1

3
5K25K35K45

7z~3!N~0!

128 S \vF

pkBTc
D 2

, ~5.4c!

where Tc depends on the coupling constantg in the usual
exponential formkBTc5vc exp@22/gN(0)# with vc being
the cutoff energy scale, andN(0)5m/(2p\2d) is the den-
sity of states~per spin! at the Fermi level. The results~5.4!
are valid in lowest order inuhu/m, where we findK35K4. If
we assume that the density of states had a weak energy de-
pendence with energy derivative N8(0)'N(0)/m

SPONTANEOUS HALL EFFECT IN A CHIRALp-WAVE . . . PHYSICAL REVIEW B 64 054514

054514-11



5m2/(p\4kF
2d) at the Fermi surface, then there would be a

tiny difference betweenK3 andK4, yielding the contribution
to the free energy density

FZ5
e\N8~0!

8cm
lnS 2eCvD

pTc
D @ i h~r!3h* ~r!#•B

52
n0h0

2

2m2
lnS 2eCvD

pTc
Dm•B, ~5.5!

whereC50.5772 . . . is theEuler’s constant,n05kF
2/2pd is

the electron density, andm is the magnetic moment~per
electron! of a Cooper pair in the chiralp-wave state

m52 ẑ
mB

2h0
2
Im~hx* hy!. ~5.6!

Here mB5e\/2mc is the Bohr magneton. Equation~5.5! is
the Zeeman energy for the intrinsic magnetic moment of the
chiral p-wave state. As is well known,25–27 it is diminished
by the factor (h0 /m)2 which indicates the degree of particle-
hole asymmetry at the Fermi level. Since this contribution is
very small, we can ignore it in the following analysis.

From the coefficients in Eq.~5.4! we immediately obtain
the order parameter

h0~T!5pkBTcA 8t

7z~3!
, ~5.7!

the coherence length

j~T!5A2K1

uau
5

\vF

pkBTc
A21z~3!

32t
, ~5.8!

and the London penetration depth

l~T!5
\c

2eh0
A 1

8p~K11K2!
5

c

evF
A 1

8ptN~0!
.

~5.9!

The second contribution to the free energyLe has the fol-
lowing coefficients:

1

8p l 2
5e2N~0!, ~5.10a!

K̃1

3
5K̃25K̃35K̃45

7z~3!e

128pd~pkBTc!
2

, ~5.10b!

2C15C252
C3

3
5C45

7z~3!e

256pd~pkBTc!
2

. ~5.10c!

Notice thatK̃ i5e]Ki /]m. This relation can be easily under-
stood, if we regardeA0 as a spatial variation ofm. In the
course of deriving Eqs.~5.10b! and ~5.10c! we have natu-
rally assumed that the momentumk in d(k)5 ẑ(h•k)/kF is
close to the Fermi surface. The CS-like term describing the
reaction of the intrinsic magnetic moment to a change in the

superfluid density doesnot have the reduction factor found in
Eq. ~5.5!, in agreement with the argument by Volovik and
Mineev.25,28

From Eqs.~5.4! and ~5.10! we obtain the parameters ap-
pearing in Eqs.~4.19! and ~4.22!:

2 l 15
l 2

2
5

\cd

2e2t
, ~5.11a!

l

l 3~0!l 4
5

3e2t

4\cd
. ~5.11b!

Now we may express the results for the two cases dis-
cussed in the last section in terms of the microscopic param-
eters. The Hall voltage induced by an external current is
found to be

VH5«I
h

16~ekFl!2 S 2k1
3k

k11D ~5.12!

in the leading order int. Here we have made use of the
relation (kFl)25mc2d/4e2t. We find a strong reduction
compared with the quantum unit of resistanceR05h/2e2.
The factor 1/(kFl)2 can be also written as 16pnsx/n0,
where ns is the superfluid density andx5mB

2N(0)53xorb

corresponding to the orbital susceptibility. We can thus re-
write Eq. ~5.12! as

VH5«I
phgx

e2 S 2k1
3k

k11D , ~5.13!

whereg5ns /n052t is the ratio of the superfluid density to
the electron density. Obviously the Hall resistance strongly
depends on material dependent parameters and is also rather
severely reduced from the universal valueh/e2. In Sec. VI
we will analyze the quantitative aspect in more detail.

We turn now to the reciprocal case~2!. Here the effect is
more subtle as the response to an external electric field con-
stitutes a change of the field distribution in the vicinity of the
surface. Since there is already spontaneous magnetization
generated by the surface currents, we estimate the relative
change of the total magnetic flux

dF

F (0)
5

dAy
(2)~0!

Ay
(0)~0!

52
eEl2

ml S k1
5

2D . ~5.14!

The electric fieldE should be smaller thanD/el in order to
avoid nonlinear effects that arise from the field effect on the
superconducting order parameter at the surface. Therefore
the induced change of fluxdF would only be a very small
fraction of the spontaneous magnetic fluxF (0).

VI. DISCUSSION BASED ON HYDRODYNAMIC
EQUATIONS

A. The hydrodynamic equations

In the previous sections we have considered the SHE us-
ing the self-consistent solution of the BdG equation atT
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50 and the extended GL theory nearTc . In this section we
introduce a phenomenological description based on the sta-
tionary hydrodynamic equations. This approach can provide
an interpolation between the two limits and allow us to have
a simple intuitive understanding of the physics involved. Our
starting point is the phenomenological Lagrangian

F5E d3r F f 1eA0

] f

]m
2

1

8p
~¹A0!2

2
1

8p l 2
A0

21
1

8p
~¹3A!2G , ~6.1!

which describes electromagnetic properties of a supercon-
ductor. In the chiralp-wave state the Lagrangian densityf
may be written as

f 5nsFm

2
~vs1v0!21¹•~m3A!G , ~6.2!

wherevs5(e/mc)A andv0 is the velocity of the supercur-
rent generated by the spatial dependence of the order param-
eter

v05S v0x

v0y
D 5

\

8mh0
2 F S Im~3hx* ]xhx1hy* ]xhy!

Im~3hy* ]yhy1hx* ]yhx!D
1S Im~hx* ]yhy1hy* ]yhx!

Im~hx* ]xhy1hy* ]xhx! D G . ~6.3!

The first term corresponds to the ordinary supercurrent due
to phase gradient, while the second term is connected with
the spontaneous current due to texture of the order param-
eter. The latter is equivalent to the surface current of the
chiral edge states and will be important for our discussion.
The partial derivative in Eq.~6.1! acts onns as

]ns

]m
5

]ns

]n0

]n0

]m
52gN~0!, ~6.4!

whereg5ns /n0 is the ratio of the superfluid densityns to
the electron densityn05kF

2/2pd. We know the two limiting
values ofg: g51 at T50 andg52t nearTc .

The Lagrangian densityf can be deduced from the GL
Lagrangian in the following way. In the chiralp-wave state
we may assume without loss of generality thathx* hy is
imaginary. With the weak-coupling result~5.4c!, it is easy to
confirm that theKi terms inF ~3.2! generatensmvs•v0, in
addition tons(m/2)vs

2 . The latter term can be obtained with
the approximationuhxu25uhyu25h0

2. It is then natural to
complete the square to makem(vs1v0)2/2, which is nothing
but the kinetic energy of the superfluid in the presence of the
spontaneous flow with the velocityv0. From the relation
K̃ i5e]Ki /]m, one can also see that theK̃ i terms lead to the
kinetic energy contribution toeA0] f /]m. Furthermore, we
find from Eqs.~3.4! and ~5.10c! that theCi terms have a
contribution

2 iC1

8e

\cE d3r ~hx* hy2hy* hx!~Ay]xA02Ax]yA0!

5 iC1

8e

\cE d3rA0¹•@A3 ẑ~hx* hy2hy* hx!#

1surface term ~6.5!

in the chiral p-wave state wherehx* hy is imaginary. This
gives the remaining term 2geA0N(0)ns¹•(m3A). With the
help of the identity¹•(m3A)5A•(¹3m)2m•(¹3A), we
find that¹•(m3A) represents the coupling of the magnetic
current¹3m to the vector potential as well as the Zeeman
energy of the magnetic momentm. It is important to realize
that the full magnetic moment of a chiral Cooper pair ap-
pears here, without reduction found in Eq.~5.5!. The scalar
potential induces a change in the number of Cooper pairs,
which is necessarily accompanied by the change of the full
magnetic moment per Cooper pair.25

We now take the variation ofF with respect toA to obtain
the extended London equation

¹2A2
1

l2
A1

4p

c
j 50, ~6.6!

with the current density

j52nsev022egN~0!@eA0~vs1v0!1cE3m#. ~6.7!

The variation ofF with respect toA0 yields

¹2A02
1

l 2
A01

8peN~0!

n0
f 50. ~6.8!

Since the Thomas-Fermi screening lengthl is much shorter
thanj andl, we may ignore¹2A0 to obtain immediately

A05
ns

en0
Fm

2
~vs1v0!21¹•~m3A!G , ~6.9!

which we may call a generalized Bernoulli equation. The
first term represents a Bernoulli force coming from the ki-
netic energy of superfluid. In conventional superconductors
without broken time-reversal symmetry, the spontaneous
current is absent. In such a case a supercurrentI injected
from an external current source can generate a transverse
potential difference proportional toI 2.29–31 On the other
hand, in the case of our interest where a spontaneous current
flows along a boundary (v0Þ0), an external current can in-
duce a transverse potential difference proportional toI. The
second term in Eq.~6.9! is characteristic of the chiralp-wave
state where Cooper pairs have their magnetic moment. Both
terms are important in the SHE and in its reciprocal effect.

B. Spontaneous Hall effect and its reciprocal effect

Let us study the spontaneous Hall effect using the hydro-
dynamic equations. As in Sec. IV, we consider a chiral
p-wave superconductor with a boundary atx50 only. The
superconductor occupies the positivex region and the system
is translationally invariant in they andz directions. We sup-

SPONTANEOUS HALL EFFECT IN A CHIRALp-WAVE . . . PHYSICAL REVIEW B 64 054514

054514-13



pose that the spatial profile of the order parameterh(r)
5„hx(x),hy(x)… is already determined self-consistently in
the equilibrium state. In particular, as we have observed in
the BdG calculation in Sec. II, the order parameter satisfies
hx5dhy /dx50 atx50 under the assumption of the specu-
lar reflection at the surface. We will calculate a linear re-
sponse to week electromagnetic perturbation.

The local variation ofh near the boundary yields a spon-
taneous current due to the order parameter texturejt
52nsev t , where

v t5
\

8mh0
2
ImS hx*

dhy

dx
1hy*

dhx

dx D ŷ. ~6.10!

This current determines the vector potentialA5(0,Ay,0)
obeying the London equation

S d2

dx2
2

1

l2D A52
4p

c
jt , ~6.11!

whose solution under the boundary condition]xAy50 at x
50 is

A(0)~x!5
2pl

c E
0

`

~e2ux2x8u/l1e2ux1x8u/l!jt~x8!dx8.

~6.12!

In particular, its boundary value is

Ay
(0)~0!5

pnslmB

h0
2 E

0

`

e2x/lImS hx

dhy*

dx
1hy

dhx*

dx Ddx.

~6.13!

Having determinedh andA, we are now ready to obtain the
scalar potentialA0 from the generalized Bernoulli equation.

Suppose that a small currentI is injected from an external
source to the superconductor, yielding a small change in the
vector potential A5A(0)1dA, where dA(0)
52I (2pl/cd) ŷ. Accordingly, the scalar potential acquires
a small change, whose boundary value is

dA0~0!5
ns

en0
dA•S e2

mc2
A(0)1

e

c
v t1¹3mD U

x50

,

~6.14!

where we have used the fact thatm50 atx50. The intrinsic
magnetic momentm defined in Eq.~5.6! gives

¹3m5
mB

2h0
2

ImS dhx*

dx
hy1hx*

dhy

dx D ŷ. ~6.15!

The spontaneous Hall voltage in the Hall bar geometry can
be related todA0 by the relationVH522dA0(0) as in Sec.
IV. From Eqs.~6.10!, ~6.12!, and~6.15! we obtain

VH

I
5

2phnsx

e2n0h0
2 FlImS hy

dhx*

dx DU
x50

1E
0

`

e2x/lImS hx

dhy*

dx
1hy

dhx*

dx DdxG . ~6.16!

With the approximate form~4.5! of the order parameter used
in Sec. IV, Eq.~6.16! becomes

VH

I
5«gx

2ph

e2 S k1
k

k11D ~6.17!

which compares well with Eq.~5.13!.
The quantitative comparison with the self-consistent solu-

tion of the BdG equations encounters some drawback from
the fact that for the sake of numerical accuracy the cutoff
energyvc had to be taken comparable to the Fermi energy.
Therefore, there are larger strong-coupling corrections not
included in our phenomenological analysis. Nevertheless, we
find a reasonably good agreement between the phenomeno-
logical and the BdG estimates. The result from the numerical
BdG calculation (kFj0516 andl /j050.1) is

VH

I
'

h

2e2
310233H 1.3, k51

0.5, k52,
~6.18!

while Eq. ~6.17! with the same parameters~apart fromvc)
leads to

VH

I
'

h

2e2
310233H 1.5, k51

0.65, k52.
~6.19!

The discrepancy is not only a result of weak-coupling versus
strong-coupling approach, but we would like to remind that
we have also used an approximate description of the order
parameter texture at the surface.

Obviously the resistance obtained here is considerably
smaller than the universal unith/e2. Now we would like to
build a connection between the SHE and the ordinary Hall
effect. We may look for the intrinsic magnetic field which
causes the Hall response to the externally induced currentI.
Comparing Eq.~6.17! with the standard expression of the
Hall effect

VH5
1

n0ec

IH eff

d
, ~6.20!

we obtain the effective magnetic field

Heff5pnsmBkS 11
1

11k D . ~6.21!

The effective field corresponds to the density of magnetic
moments of Cooper pairs which is not the reduced magnetic
moment in Eq.~5.5!, but rather the full moment which is
associated with the change of the Cooper pair density. Note
that the factorpk@111/(11k)# is due to inhomogeneous
field and current distribution.
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Next we consider the reciprocal effect. In the presence of
a weak external electric fielddE5Ex̂ at x,0, the scalar
potential in the superconductor receives a small perturbation
dA0(x)5Ele2x/ l . This yields a small change in the current
density

d j~x!522egN~0!FedA0S v t1
e

mc
A(0)D1cdE3mG

522cegN~0!Ee2x/ lF l S e

c
v ty1

e2

mc2
Ay

(0)D 2mzG ŷ,

~6.22!

which determines the change in the vector potentialdA.
Solving the London equation, we find

dAy~0!5
4pl

c E
0

`

e2x/ld j y~x!dx. ~6.23!

Since the Thomas-Fermi screening lengthl is much shorter
than j and l, we may set v ty(x)5v ty(0), Ay

(0)(x)
5Ay

(0)(0), andmz(x)5xmz8(0) in d j y(x) in the integrand.
With this approximation we obtain

dAy~0!52E
gl

e S e

c
v ty1

e2

mc2
Ay

(0)2
dmz

dx D U
x50

52E
nsmB

4en0h0
2 FlImS hy

dhx*

dx DU
x50

1E
0

`

e2x/lImS hx

dhy*

dx
1hy

dhx*

dx DdxG .

~6.24!

The magnitude of the ratiodAy(0)/Ay
(0)(0) may be esti-

mated from Eqs.~6.13! and~6.24! for the approximate form
~4.5!, yielding

dAy~0!

Ay
(0)~0!

52
eEl2

ml
~k12!, ~6.25!

in good agreement with the GL analysis. Unfortunately, in
this case the comparison with the BdG result does not agree
well, which we attribute to the fact thatl is comparable to the
other length scales in the numerical calculation. Thus, there
are strong corrections to the above result in addition to the
strong-coupling corrections.

C. Experimental probe

Although the phenomenon we discuss in this paper can be
compared to the standard Hall effect, it has actually some
quite distinct aspects. Flowing currents are an equilibrium
property of the superconductor. It is, therefore, impossible to
measure the transverse voltage by means of standard volt-
meters, using direct contacts to the surfaces. This problem
was realized already more than 30 years ago, when the Ber-
noulli response to a current was investigated in conventional
superconductors.32 In this case a potential difference between

the surface and the interior of the superconductor is ex-
pected, which is proportional to the square of the running
current

V5
2p

ec2d2n0

I 2. ~6.26!

The potential difference is actually independent of tempera-
ture as has been observed32 for Pb. The method of measure-
ment was based on a thin-film capacitor which picks up the
voltage signal caused by an ac-current on the superconductor
surface. The same kind of capacitor technique could also be
used to detect the spontaneous Hall effect. In an ac-
measurement the above Bernoulli force (}I 2) yields the sec-
ond harmonic of the applied ac-current, while the signal cor-
responding to the SHE (}I ) contributes to the first harmonic.
Hence we can distinguish the SHE from the standard Ber-
noulli effect. We can estimate the magnitude of the Hall
response

VH5RHI 5
RHI tot

Nlayer
'

h

4e2

1

kF
2l2

I tot

Nlayer
, ~6.27!

where I tot is the total current running through a three-
dimensional sample consisting ofNlayer layers. Using typical
values for ordinary metals~for example,kFl'200 at T
50), we obtainRH'0.16V. If I tot /Nlayer51 nA, then we
expectVH'0.16 nV, which might be experimentally acces-
sible. Under the same conditions the conventional Bernoulli
signal is considerably smaller,V;1 pV. It is worth noting
that the capacitor technique in measuring the transverse po-
tential change does not require a Hall bar geometry, but a
single surface is sufficient.

Unfortunately, in addition to the high sensitivity neces-
sary in this kind of measurements a further problem has to be
taken into account. This is the formation of domains of de-
generate superconducting states with opposite chiralities.
Such domain formation is very likely to occur when a system
enters the superconducting state. The two domains with op-
posite chiralities yield opposite sign of the transverse voltage
so that the net effect might be diminished. Since the sponta-
neous Hall voltage is a surface effect, the number of domain
walls intersecting the surface matters. It would be necessary
to establish an experimental technique to realize a single do-
main phase, for example, by cooling in a weak magnetic
field.

VII. NONCHIRAL TIME-REVERSAL SYMMETRY
BREAKING STATES

We now consider the possibility of a spontaneous Hall
effect in nonchiral time reversal symmetry breaking super-
conductors. While for these superconducting states there is
no anomalous CS-like coupling between scalar and vector
potential, there are still spontaneous surface currents for cer-
tain orientations of the sample boundaries, despite the fact
that the Cooper pairs do not have a net angular momentum.
These surface currents can be associated with Andreev
bound states. Thus we would expect at least to find a contri-
bution to the SHE due to the Bernoulli force. We consider
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one of the well-known examples of a nonchiral supercon-
ducting state in a quasi-two-dimensional system that violates
time-reversal symmetry, thed1 is-wave state. We assume
that the d-wave state has thedxy symmetry, for which a
spontaneous surface current runs along surfaces normal to
the @100# or @010# direction.33 It is possible here to express
the spontaneous current again as a result of the order param-
eter texture analogous to Eq.~6.3!:

v05S v tx

v ty
D 5

\

8mh0
2 S Im~hs* ]yhd1hd* ]yhs!

Im~hs* ]xhd1hd* ]xhs!
D , ~7.1!

wherehs andhd denote the order parameters of thes-wave
andd-wave component, respectively. The currents can be of
similar magnitude as for the chiralp-wave state and conse-
quently the size of the SHE is comparable. There are, of
course, some differences from the former case. Since the two
pairing components are not degenerate in general, various
additional parameters may appear in the discussion. We have
performed a BdG calculation for a specific set of parameters
to verify the expectation of the above argument.

Figure 4 shows the data obtained from the self-consistent
solution of the BdG equation for the (dxy1 is)-wave state at
zero temperature. Here we present the results for the case
where a finite net current is running in the system. Again the
order parameter shows strong variation at the surface,
whereby thed-wave component is suppressed and thes-wave
component enhanced@Fig. 4~a!#. Looking at the quasiparticle
spectrum in Fig. 4~b!, we see obvious differences between
the chiral and the nonchiral cases. In both cases there are
Andreev bound states below the ordinary continuous spectra
of scattering states. In the nonchiral case, however, there is
no gapless edge mode, in accordance with the expectation

from the index theorem. The electromagnetic properties in
the Hall bar geometry, shown in Figs. 4~c! and 4~d!, are very
similar to the chiral case. Also, the Hall resistanceRH for the
parameters indicated in the figure caption is of similar mag-
nitude. We thus conclude that for certain surface orientations
the measurement of the transverse voltage in a nonchiral
state gives a qualitatively identical result to a chiral state.
Hence, experiments of this kind on the@110# surface of high-
temperature superconductors, where a low-temperature time-
reversal symmetry breaking phase may be present, would not
be able to give decisive results as to which state is realized,
the nonchiraldx22y21 is-wave state or the chiraldx22y2

1 idxy-wave state.

VIII. CONCLUSIONS

We have analyzed in detail the spontaneous Hall effect in
time reversal symmetry breaking quasi-two-dimensional su-
perconductor of chiral and nonchiral nature. There are two
contributions to the SHE. One is connected with the Ber-
noulli ~or Lorentz! force due to the presence of spontaneous
surface currents. The other originates from the presence of an
orbital angular momentum of Cooper pairs. While the former
contribution appears in both types of superconducting states,
there is no angular momentum in the nonchiral case. We
have shown in our phenomenological treatment that the an-
gular momentum gives rise to a Chern-Simons-like term in
the Lagrangian determining the electromagnetism of the su-
perconductor, similar to derivations based on topological
arguments.9,19 Although it was suggested that the Hall re-
sponse would be, at least, close to a universal value, our
analysis shows that the actual measurement of the Hall volt-
age gives a considerably smaller nonuniversal value. Never-
theless, the comparison of the SHE with the ordinary Hall

FIG. 4. Self-consistent solu-
tion of the Bogoliubov–de
Gennes equation for the@100# sur-
face in thedxy1 is-wave state at
T50. The set of parameters are
the same as used in Fig. 2.~a! Or-
der parameter scaled byD0, which
is the magnitude of the order pa-
rameter for thedxy wave in the
bulk region. Dd and Ds are the
magnitude of the order parameter
of the dxy wave ands wave, re-
spectively.~b! Energy eigenvalues
obtained for sine basis functions.
L andR denote the surface bound
states localized near left and right
side surfaces, respectively.~c! Di-
mensionless vector potentialay

5(ej0 /\c)Ay , magnetic fieldbz

5j0]xay , and current densityj y

52j0]xbz . Total current is I
55eD0 /\kFj0. ~d! Dimension-
less scalar potentiala05eA0 /D0,
electric field ex52j0]xa0, and
charge densityr5j0]xex .
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effect reveals the presence of an intrinsic effective magnetic
field corresponding to the density of Cooper pair magnetic
moments.

The effect depends on the presence of spontaneous sur-
face currents. In our analysis we have restricted ourselves to
the case of a perfect, specularly scattering surface. Rough
surfaces with diffuse scattering would reduce the spontane-
ous currents and the Hall voltage. Moreover, domain forma-
tion constitutes another obstacle to the measurement of the
SHE, because different domains give contributions of oppo-
site signs. Nevertheless, we believe that experimental tech-
niques available at present are sufficiently accurate to ob-
serve the spontaneous Hall effect.
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