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Spontaneous Hall effect in a chiralp-wave superconductor

Akira Furusakit Masashige Matsumotoand Manfred Sigrigt*
yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
2Department of Physics, Shizuoka University, Shizuoka 422-8529, Japan
(Received 8 February 2001; published 12 July 2001

In a chiral superconductor with broken time-reversal symmetry a “spontaneous Hall effect” may be ob-
served. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor.
We identify two main contributions to the spontaneous Hall effect. One contribution originates from the
Bernoulli (or Lorent? force due to spontaneous currents running along the surfaces of the superconductor. The
other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs.
The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the
superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral
superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-
consistent solution of the Bogoliubov—de Gennes equation, a generalized Ginzburg-Landau theory, and a
hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous
Hall resistance of a two-dimensional superconducting Hall bar is of dit@k:\)?, wherekg is the Fermi
wave vector and\ is the London penetration depth; the Hall resistance is substantially suppressed from a
guantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.

DOI: 10.1103/PhysRevB.64.054514 PACS nuniber74.25.Fy, 74.25.Nf, 74.20.De, 74.70.Pq

[. INTRODUCTION spond to the superfluidh phase, which is a well-known
T-violating pairing stat&'° Indeed, the experimental
Unconventional superconductivity appears with a largeevidencé®? for unconventional superconductivity in
variety of possible phases displaying many properties thabr,RuQ, is consistent with the basic order parameter
are not shared by conventionatwave superconductors. symmetry!=13
These phases are characterized by their symmetry properties, .
and in most cases not only the(1)}-gauge symmetry but d(k=3A kyxiky
other symmetries are also spontaneously broken. Interesting ke
physics emerges, in particular, when time-reversal symmetry o
Tis violated in a superconductor. Volovik and Gor’kov have & P-wave(spin-tripley state. Here we have used the standard
classified such superconducting states into two categorie§otation of thed vector to represent the order parameter of
the so-called “ferromagnetic” and the *antiferromagnetic” the triplet stat® A(k)=id(k) - oo”, whered' are the Pauli
states: They are distinguished by the internal angular mo-matrices. Thed vector (1.1) pointing along thez direction
mentum of Cooper pairs. In the ferromagnetic state the Coomplies that the spin part of the Cooper pair wave function is
per pairs possess either a finite orbital (bor nonunitary  the spin-triplet state withS,=0, i.e., in-plane equal-spin
state$ spin moment, while in the antiferromagnetic pairing (thez direction is along the axis of SpRuQ,). In a
state they have no net moments. Examples of these twsystem with cylindrical symmetry the orbital part of the pair
types of states were recently discussed in connection witvave function is a state with finite angular momentum along
high-temperature superconductors; the so-cald ,» thezaxisL,==*1. Obviously the state represented by Eq.
+id, -wave state represents a ferromagnetic pairing statdl.1) is “ferromagnetic,” and is also called chirg-wave
while the d,2_,2+is-wave state is antiferromagnetic. In state.
high-temperature superconductorg-aiolating state is most The chirality of this superconducting state is characterized
likely to be realized only near surfaces or interfaces at veryy a topological numbeN defined by1°
low temperature$:* Among the heavy fermion supercon-

1.9

ductors there are two well-known systems which have 1 (= e ~ [ dm

T-violating bulk superconducting phases: YPtand N:E _wdef_xdkym' 8_kx><t?_ky ' (1.2
U, ,Th,Be;3 (0.01<x<0.45). These materials show su-

perconducting double transitions, afidviolation is associ- The unit vectorrﬁ(kx,ky) is

ated with the second of the two transitioh&. more recent

candidate forZ-violating superconductivity is SRuQ,.,® a ~ m

layered perovskite compound. Experimentally,,F&r0, M= T m=(Red,,Imd_,€,), 1.3

shows clear features of a strongly correlated quasi-two-

dimensional Fermi liquid above the onset temperature of suwhere 6k=(k)2(+ ki)/Zm—,u is the kinetic energy measured
perconductivityT.= 1.5 K. It was suggestédhat, since this from the chemical potentigk. (Throughout this paper we
system in the normal state behaves as a two-dimensionalill assume the cylindrical symmetry whenever microscopic
analogue to®He, the superconducting phase would corre-modeling is necessary, although the inclusion of crystal field
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effects is straightforward. Note that, being topological, thestood in terms of a transverse order parameter textures. Natu-
numberN can be defined without resorting to the cylindrical rally they lead to a Hall response. The second originates
symmetry) The topological humbeN corresponds to the from the intrinsic magnetic moment of the Cooper pairs in
multiplicity of the wrapping of a spher&? in the mapping of  the chiralp-wave state. The former contribution is present in
R?U{=}=$? to anotherS? representing the unit vecten. ~ Pboth chiral and nonchiral superconductors, since both can
The vectorm does not vanish at ark; allowing us to define have spontaneous surface currents, while the latter contribu-
the topological numbeX uniquely. In the chirap-wave state  tion exists only in chiral sgpercpnductors. We thgrefo_re con-
(1.1) the topological numbeN is either+1 or —1 depend- clude that even a nonchirgantiferromagnetic 7-violating
ing on the chirality of the state or the orbital angular momen-Superconductor can have a SHE.
tum. The organization of this paper is as follows. In Sec. Il we
A chiral superconductor has gapless chiral edge modes #itroduce a simple microscopic model for the chipavave
interfaces between states of opposite chiralitidgemain  Superconductor and solve the BdG equation self-consistently
walls) or between a chiral state and a vacu(surface, as  at zero temperature. In Sec. Ill we present the extended GL
dictated by the index theorem. Volovik pointed ¥ithat the ~ theory and derive basic equations. They are used in Sec. IV
topological invariantN determines the number of gapless 0 analyze the SHE nedf; . In Sec. V we present parameters
edge modes per spin at a boundary between different sfates@ppearing in the extended GL theory obtained from a micro-
This yields 2N;—N,| such modes at the interface of two SCOpic weak-coupling analysis. The GL theory is the basis to
domains characterized by the topological numkiggsand ~ formulate an effective hydrodynamical theory presented in
N,, respectively. At an interface between a chipatvave  S€c. VI, which allows us to interpret and estimate the SHE in
state and a vacuum we find two modese per spin These & Simple way distinguishing the two contributions mentioned
states can be easily understood in terms of Andreev boun@0Vve. In Sec. VIl we also demonstrate the SHE in the non-
statest*~"Recent point contact experiments provide the firstchiral s+id-wave state by the numerical BdG approach. The

indication for these states at the surface ofRSI10,.'8 results are summarized in Sec. VIII.
The presence of gapless chiral edge modes is reminiscent
of quantum Hall fluids. One can thus expect a chiral super- || SELF-CONSISTENT BOGOLIUBOV-DE GENNES
conductor to have a Hall effect. This is a spontaneous Hall ANALYSIS
effect(SHE) in the sense that a transverse voltage appears in
response to an external current even without an external A. Model formulation
magnetic field applied to the superconductdine Hall con- We consider a chirgh-wave superconductor in which en-

ductance is not quantized, however, contrary to a naive anagrgy band and order parameter have no momentum depen-
ogy. This is because the electric current can be carried asdence in the direction. We may thus treat the system as if it
supercurrent by superconducting condensate or, in othgg two dimensional. The starting point of our analysis is a

words, the |00a|df129h_%[ge density is notacons\,g?:ygd quantity ifhean-field Hamiltonian for a two-dimensional spin-triplet
a superconductor.~"In fact, it has been sho that the superconductor withi|z. The Hamiltonian is given by ye

spin and the thermal Hall conductance are quantized to the ; e :
topological numbeN in appropriate units. Even though it is = JdxJdyHug with the Hamiltonian density
nonuniversal, the spontaneo(sharge Hall effect is inter- 1

esting in its own right because it is an effect which can be _ + + 2
experimentally measured, in principle. Thus we would like HMF_; Yoo ¢5(1) + g|77(r)|

to investigate in detail in this paper the origin and magnitude )

of the effect. To this end, it is necessary to understand what o t t t t

one would actually measure in an experiment trying to ob- 2k {(r)- Lo (DY 41 (D) + 4y (NV 4 (1)]
serve the SHE. Computing a diagram for the current-current N

correlation function in a bulk superconductor does not give a + (0 -[¢ DV (N + DV (D]} (2.D)
proper solution to this problem. On the contrary, we have to

understand physics near a surface of a chiral superconductor, 1
taking into account issues such @3 the spatial variation of ho(r)=ﬁ
the order parameter near the surfa®, the spontaneous
current running along the surface of the chiral supercon
ductor, and(3) screening effects for both magnetic field and
electric field in the superconductor. We study the surfac

properties using three different approaches: a numerical sel;(ax 4,). The superconducting order parameter should sat-

consistent analysis of the Bogoliubov—de GenrBsiG) . : . . .
equation, an extended Ginzburg-Land&L) theory with a '(535:;;'&58']; Eoon5|stencje gap equation, obtained from
MF/ = Vs

scalar potential, and a phenomenological hydrodynamic for:
mulation. We find that there are two basic contributions to .
the SHE. The first is the Bernoulli force due to spontaneous _9 B

currents which flow near the surface. They are the conse- "_(”X’ny)_ZkaT(r)[V%(r)] [Vir(D1g()-
guence of the chiral surface states, but can also be under- (2.3

2

—u—eAy(r), (2.2

. e
—iAV+ EA(r)

where ¢, is the annihilation operator of electron with spin
o=1,], gis the coupling constant of the attractive interac-
ion that is responsible fop-wave pairing ¢>0), andV
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We are interested in systems with boundaries in which the S )
order parameter; depends om= (x,y). The uniform system  Ji= —Cﬁf drHye
with d given in Eq.(1.1) corresponds to the casg=A(1, '

). % e
_ t T t
The equations of motion for the fielg, are ifidy, =Tez [m[%(ﬂi Vo) = (ihe) ol o Aidhos [
=[4,,Hye]. Substituting ¢, =ue™'*/* and yl=pe <
into them, we arrive at the BdG equation 2.7

where the fieldss, are expanded as in E(.5). At this level
i a finite contribution comes only from the edge md@e).
ho(run(r)— W[n-vanrV-(vnn)]: enup(r), Thus, we may restrict the summation over the eigenstates to
F 0< < /2. The total charge current running along the edge
(2.49 is given by

—hg (Nva(r)— zl—kF[n* VU, + V- (Uy ") = €qvn(r). ly= fo dx(0]3,|0)

(2.4b eh (= : :
=— Hfo dxIm(O| /1 dy iy + 4 3y, 0)
The wave functions are normalized in two dimensions:

Jaxfdy(|u,|?+|val?)=1. When @,,v,) is an eigenfunc- _ 2efi kely (1 ” . ECu
tion with energye,, (v* ,u*) is an eigenstate with energy T m 27 Jo d(sin ) 0 dxim(vdyvg)= 572
—e€,. With these eigenfunctions the field operators are ex-

panded as (2.8

where we have seA=0, ignoring the vector potential in-
* Cet/h duced by the spontaneous current, i.e., diamagnetic screening
gr(r.0) Un Un V”Te_ " currents. The currerit, is spontaneously running along the
gl | = 2 L og up || vh e (25 edge of the chirap-wave superconductor. If the chemical
" potential could be shifted by a constant as->u+eV in
some way, then the spontaneous current would change by
The ground stat¢0) satisfiesy,,|0)=0. ee?V/h. From this simple-minded argument it is tempting to
Gapless chiral edge modes are present at boundaries ofc@nclude a universal value of the Hall conductance. This
chiral p-wave superconductor. To illustrate this within our argumentation is invalid, because both the superconducting
model, it is sufficient to solve the BdG equation with a sim-condensate and the edge states carry current and, further-
plified gap function with step-function form,»  More, the constant shift of the chemical potential is not real-
=O(x)A(Lje), where®(x) is the Heaviside step function istic to describe a Hall measurement. Indeed a careful analy-
and e=+1 is the chirality of the condensate. The self- SiS of the physics of the superconductor surface region is
consistent solution of the BdG equation will be presented iecessary as we will demonstrate below.
the next subsection. The bound state solution to )
with energy eigenvalue= Asinf (— 7/2< < /2) and with B. Solution for Hall bar geometry

boundary conditioni,=v,=0 atx=0 is given by In this section we study the transverse voltage induced by

an externally driven current by solving the BdG equations
uy(r) (2.4) self-consistently for a system with Hall bar geometry.
2 ed — X i ekevsing sinkexcosg)  \We model the Hall bar by a two-dimensional system of
v(r) oLy &o EXeY F width L, in the x direction and length., in they direction.
The currents run along thgdirection, in which we impose
e'm4 the periodic boundary conditions. The superconducting state
x( ) , (2.6) with the symmetry of the chirg)-wave state is parametrized
by »=(A,iAy), whereA, and A, are real functions of.
The calculation is done for zero temperature.

. . . In the Hall bar geometry it is convenient to use the fol-
where L, is a linear scale of the superconductor in

y-direction. We have used the Andreev approximation validIOWIng two basis sets of wave functions
for A<u. The amplitude of the edge state decays in the bulk ( Dan(K,T)

sink, X
on the lengthé,=#v-/A. With the wave number in th [ 2 X
g ‘fO UE g l/fcos(k,r)) = rl_yelkyy( COSkXX) , (29)

direction k= ekg sin 6, the energy dispersion of the chiral
edge mode ig(ky) =gAk,/Kg.

We now calculate current carried by the chiral edge modevherek,=2I7/L, andk,=m/L, (I,m: intege) by setting
at zero temperature. The current denditis defined as either the wave function or its first derivative to zeroxat

e—i7T/4
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=0 andL, . We solve the problem twicéi) with the Dirich- ez ¥ (r) v (1)
let boundary condition at=0 andL, and(ii) with the Neu- Jy(r)=F PORPEG) 3 —oun(r) 3
mann boundary condition. Afterwards we take the average of En=0 y y
both solutions in order to remove unphysically rapid changes g2
of the electron density at the surface. Expandinér) and - Rne(r)Ay(r), (2.13b
v,(r) as
where only they component of the current is nonvanishing in
U (1) U (K) f[he Hall _bar geometry. Note that these den_sitie_zs are de_fi_ned
n n in two dimensions because of the normalization condition
( Un(f)) - Ek (k) Psin,cod Kar). (2.10 imposed oru, andv,. The scalar and vector potentials obey

the Maxwell equations

we can solve the gap equation numerically by diagonaliza- 5 4me 5 A
tion. The order parameter is determined self-consistently ¥ Ao(f)=——; [Mo—ne(n)],  V Ay(r):_a‘]y(r)-

from the gap equatiof2.3) for T=0
: ig . .
(A id) == 2 [U(NVur(N)=vi(N)Vus(N],
2Ke E50
(2.11
where the coupling constarg is chosen to giveA,=A,

=Ay, in a bulk chiral p-wave superconductor. Thug, is
obtained by solving the gap equation

1 k2

1
e
9 (4mkg)? Ver+ (Aok/kg)?

m f‘“c d 1+ 6/,U,
= —— 6 =
8mh?)-w. E+A5(1+elu) 8mwh?

(I1+13),

(2.12

wherew, is a cutoff energy and

@¢ 1
Il:f dE

- g \/€2+A02(1+ elw)
2wC+Ag//_L+2\/w§+A§(1+ welw)
— 2w+ A p+ 2\l + AN 1—w./w) ’

1 (o €

de
o, \E+AR1+elu)

w w
\/wg+Ag( 1+ f) _ \/wg+Ag( - F)J

Ao
2,u¢2.

l,=

The solutions to the BdG equatioi2.4) determine the
electron density and current density

ndN=22> lva(n? (2.133
E, >0

(2.19

We have introduced the lengthto convert the area densities
into the volume densities. Physicalty corresponds to the
spacing between two-dimensional layers in,F810Q,. To
keep overall charge neutrality, we introduggas the density
of the uniform positive background chargellium mode).
The externally injected currentfixes the boundary condi-
tions for the vector potential

IA,

IAy B Ay
X

3

_277

=—l.
x=L, cd

x=0

(2.15

The self-consistent order parameters, scalar and vector po-
tentials can be obtained numerically by solving E(s4),
(2.11), and(2.14) iteratively until convergence is reached. In
the iteration step we fix the total number of electrons to the
normal state value by adjusting. In the self-consistent so-
lution electric charge is screened on the Thomas-Fermi
length scale = (%2d/4e’m)Y2. Since we have three material-
dependent parameteds,, kg, andd, we have freedom to
change three dimensionless parameieis, N/ &g, andl/&,.

C. Discussion of the self-consistent solution

The solutions of the BAG equation reveal that the relevant
physics of the Hall bar indeed happens at the two surfaces.
First we consider the solution for the case where total current
along they direction is zero. The order parameter varies
strongly at the surfaceA, is suppressed whilé\, rises
slightly as shown in Fig. ). This behavior is connected
with the reflection properties of Cooper pairs at the surface.
Resulting interference effects are destructive Agr, since
the order parameter is odd under reflection at a surface nor-
mal to thex direction. Note that this order parameter varia-
tion is specific for a specular reflection at the surface and
would look different for the case of diffuse scattering. We do
not, however, consider this aspect here further.

At the surface the chiral edge states appear with a linear
dispersion around the Fermi energy. These are Andreev
bound states as a direct consequence of the chirality of the
superconducting state. The two branches seen in Fly. 1
belong each to one of the two edges of the bar. These chiral
edge states generate spontaneous currents at the surface

flowing alongnxi (n: surface normal vectar The currents
on the two edges of the Hall bar run in opposite directions,

054514-4
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FIG. 1. Self-consistent solu-
tion of the Bogoliubov—de
Gennes  equation of the
pxtipy-wave state alf=0. The
set of parameters are chosen as
§o=fvelAg, ke&Hp=16, o
—8A0, K= )\/g():l, |2025§0,
and Ly=L,=20%,. (a) Order pa-
rameter scaled by, which is the
magnitude of the order parameter
in the bulk region.(b) Energy ei-

genvalues obtained for sine basis
functions.L andR denote the sur-
face bound states localized near
x=0 and x=L,, respectively.
States with |[E |>A, are ex-
tended. Unit ofk, is 27/L,. (c)
Dimensionless vector potential,
=(e&o/fic)A,, magnetic fieldb,
=¢pd,a,, and current density,
=—¢pd4b,. (d) Dimensionless
scalar potential ag=eAy/Ay,
electric field e,=—¢y0,89, and
charge density= £yd,e,.

0.04

0.03
0.02 {

0.01

-0.01

-0.02

-60 -40 -20 0 20 40 60
k(2L

thereby no net current is flowing in the Hall bar. The edge If we introduce a net current driven from an external
currents generate a magnetic field, which is screened bgource, this external current will be distributed equally to
counter currents in the interior of the supercondug¢teg. both surfacegsee Fig. Pa)]. This affects the surface states
1(c)]. The length scale of the surface current is the coherencdifferently for the two sides, because on one side the external
length &, while the screening currents spread over the Lon<current flows with the spontaneous current, on the other
don penetration depth. The surface magnetic fields gener- against it. Furthermore, the scalar potential is not equal any-
ate a finite magnetization whose sign depends on the sign #fore at the two sides because the charge dipole layers are
Cooper pair angular momentum and the sign of the chargenodified differently, as we can see in Figb2 This trans-
i.e., electronlike or holelike Fermi surface. verse voltage difference depends on the orientation of the
Turning now to the question of the scalar potential and theexternal current and appears in the absence of an external
charge distribution in the superconductor, we find again thafagnetic field.
all interesting features show up only in the surface region. Our calculation clearly shows a linear relation between
There is a finite excess charge at the surface, which ige source current and the transverse voltagé, as ex-
screened due to Thomas-Fermi screening. As a result theected for the Hall effect. Deviations occur only when the
charge density forms a dipole layer and is overall charg&urrent approaches the critical value where the order param-
neutral. This is the constraint that we have imposed by fixingeter starts to be strongly affected by the current. In Fig. 3 we
the external electrical field to zefoote that in our Hall bar show thex, |, andkg&, dependences of the Hall resistance
geometry a finite charge or equivalently a finite externalRy=Vy/l. What is immediately obvious is that the Hall
electric field would correspond to an infinite field energy, resistance is strongly suppressed from the quantum unit of
since the capacitance is zgraThe dipole layer induces resistanceR,=h/2e?. There is also a strong dependence on
a local electric field and causes a shift of the scalar potentighe material dependent parameters, indicating that the behav-
relative to its value in the bulk of the superconductorior is nonuniversal. Unfortunately, in the numerical BdG
which we choose to be zero. The charge distributionsscheme we are limited in the choice loféy, A, andkg ',
and potential at the surface are the same on both sides of thecause large difference in their magnitudes demands large-
bar. scale computation. In the next section we study the SHE
Under the assumption that the Hall bar is symmetric aboutising the extended GL theory which will allow us to calcu-
x=L,/2, there is no potential difference between the twolate Ry analytically for temperatures close .. We can
sides. We would like to mention that scalar potential varia-already here confirm that the quantitative comparison be-
tions close to the surface are not unique to chiral supercortween the two methods works very well. It will also become
ducting states, but occur in any superconductor whose ordetear that there are a few contributions to the transverse volt-
parameter is influenced by surface scattering. age.
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FIG. 3. (a) x dependence of the Hall resistance. Within the same
ke&y, the three lines from the top correspond lte0.1&,, |
FIG. 2. Self-consistent solution of the Bogoliubov—de Gennes=0.25,, and|=0.5¢,, respectively.(b) | dependence of the Hall
equation afT=0 when current =5eAq/Ake&y is externally sup-  resistance. Within the sanmig-£&,, three lines from the top corre-
plied. Set of parameters are the same as used in Fi@ Dimen-  spond tox=1, k=1.5, andk=2, respectively. In both figures the
sionless vector potential, magnetic field, and current denéily. Hall resistanceR is scaled byR,= h/2e?.
Dimensionless scalar potential, electric field, and charge density.
reversal symmetry and () the gauge symmetry. The GL
Ill. GINZBURG-LANDAU FORMULATION free energy expansion fo with the symmetryG is well

23 E_ 43
We formulate an extended Ginzburg-Landau theory baseénown' F=Jd* 7, where

on symmetry arguments which includes the scalar and vector b,

potentials in a general form. This allows us to analyze the F=an: 7* + by (5 7*)?+ 7(7]2277)2,+ nzmy°)
anomalous coupling between charge and magnetic degrees of

freedom in chiral superconductors. +b3| 7 ? y| >+ K1(|Dy i 2+ Dy 1y |?)

+ K2(| Dx77y|2+ | Dy77x|2) + K[ (Dy7)* (Dy77y) +c.cl

The paring symmetry of the chirprwave superconduct- +K4[(Dy7my)* (Dy7,) +€.6]+ Ks(| D75 >+ D7y %)
ing state is characterized loigk) = zA (k,* iky)/Ke , which'is (VXA)?
a combination of the two degenergpewave components + —8r (3.2
with p, andp, symmetry. This degeneracy is not lifted when
we introduce a tetragonal crystal field, although the details ofrhe coefficients, b;, andK; are nonuniversal real numbers
the k dependence af may change. The twofold degeneracy that depend on the details of the material. The coeffic@gst
requires that we introduce two complex order parametenegative belowl; (axT—T.). For the choice &b,<4b,
componentsn (mx,my), such that thed vector becomes +b; and bz< b2, we find the homogeneous phasg

d(k)=2(#-K)/ks . The free energy has to be a scalar under= 7o(1,.+1) with 73(T)=|al/(4b;—b,+bs). The gradient

A. Ginzburg-Landau free energy

the transformations of the symmetry group terms are explicitly gauge invariant by the definitib=V
+i(2e/fhc)A. Equation(3.2) is the standard free energy den-
G=D X TXU(1), (3.2 sity used to study the response to the magnetic field with the
Coulomb gaugé&/ - A=0.
where the tetragonal point group,;, includes the simulta- As is well known?* the intrinsic orbital angular momen-

neous transformation of orbital and spin degree of freedontum in a chiralp-wave state is related to the difference of the
as a consequence of spin-orbit coupligjenotes the time- two terms with coefficient& ; andK:
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(Dym)* Dyﬂy—(Dxﬂy)* Dy7c+c.C. discard, whilg the second term represents the _Zee_man energy
of a magnetic moment coming from the intrinsic angular
moment i X 7*).
=| VX (7 Dny= 7y D) For oS(r 7;7)urgo)se it is essential to include additional
) terms that are coupled to either the scalar poteniigl
€ or the electric fieldE=—VAy. We consider the stationary
* %(77; M M) VXA (3.3 situation and fix the gauge so thag is zero in the undis-
z turbed homogeneous superconductor. It is more convenient
to use the Lagrangian formulation, in which the Maxwell
where it is understood that the component of a three- equations simply follow from variation with respect g, .
dimensional vector is kept in the right-hand side. The inte-The Lagrangian density involving the scalar potential is
gral of the first term gives a surface term which we maygiven by

Le=K1Ag(|Dy7d>+[Dy 7yl +KoAg(| Dy 2 +[Dy 7 ?) + KsAgL (D70 * (Dy7y) + (Dy77,) (Dy ) * ]
+R4AO[(DX77y)*(Dy77x) + (Dxny)(Dynx)* ] +R5A0(|Dz77x|2+ | Dz77y|2) +Ca[ Ex7 (Dyp) + Eyn;(Dyny) +c.c]
+ C2[EX77; (Dx77y) + Eyn: (Dy77x) +c.c]+Cyf Exn:(Dyny) + Eyn;(Dxnx) +c.cl

(VA)®  Aj
+C4[Ex7]§(Dy77x)+Eyn:(Dxﬂy)+C-C-]+CS[EZ7/:(DZ7IX)+Ezn;(Dzny)‘l'C-C-]_ S _87T|2

(3.9

with K;,C;, andl being real numbers. The coefficients will interpreted as representing a coupling between the intrinsic

be derived for the weak-coupling limit in Sec. V. In this form magnetic moment<i X #*) and the magnetic field in the
it is easy to verify that each term is individually invariant. Presence of an electric field. In other words, the CS-like term

The term A3/8xl? describes the screening of the electric describe.s the reaction of Fhe intrinsic magngtic moment to a
charge in the metallic and superconducting state, whise ~change in the Cooper pair dens%fyTh_e CS-like term pro-
the Thomas-Fermi screening length. The choice of this fornPortional toC;— C, will play an essential role in the SHE, in
fixes A, to zero in the bulk of the superconductors, which addition to others.

corresponds to the chemical potential as required by our

choice of gauge. We emphasize that+ F plays a role of B. Equations for the electromagnetism

the Lagrangian density fok,, . We derive equations describing the electromagnetic prop-
We notice that thé&; terms are closely related with tle erties of the superconductor from variation faf®r (L. + F)

terms. On the other hand, ti& terms have no relatives in with respect toA; andA. The equation for the scalar poten-

Eq. (3.2). The difference of th&C; andC, terms contains a tial has the form

contribution i (7,75 — 17y 75 ) (AxdyAg—AydxAo). It de-

scribes a coupling between the scalar and the vector poten-

tials and is similar to the Chern-Simo(8S) term. Since the

fields are static, however, it is not exactly the same as the CS

term. Thus we shall call it a CS-like term. It can also bewhere

,o Ao -
ViAot 5 =4m(p=V-(P+ID], (3.5

5:R1(|Dx77x|2+|Dy77y|2)+R2(|Dx77y|2+|Dy77x|2)+R3[(Dx77x)*(Dy77y)+(Dx77x)(Dy77y)*]

+R4[(Dx7]y)* (Dy77x) + (Dxny)(Dyﬂx)*]+R5(|Dz7/x|2+ | Dz77y|2): (3.6a

Ix(Calmxl>+ Col my|?) + 3 (C3+Cy)dy( me my+ nxy)
P=—1 0y(Cq|my|>+Cy| nd®) + 3 (C3+Ca)ox(n} my+ mey) | - (3.6b
C5(9z| 7]|2
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77; Dy"]x+ nyD; 7]: - 77: Dy”y_ nXD; 77;
HZ%(C?,—CLO 77: Dx77y+ 77XD: 77;_ 77§Dx77x— nyD: 77: . (3.60
0

The two terms on the left-hand side of E§.5) describe the Its divergence is equivalent to a source charge

screening of the electric field. The quantjiyis the charge
density induced by variations of the order parameter. The pn=—V-1I
vector densityP represents the electric polarization caused

by inhomogeneities of the superconducting condensate. Both

» and P appear as a consequence of the fact that the local
change in the condensate, both in the order parameter and in
the supercurrent, leads to a redistribution of the electric —2(C3—Cy)(V|ny| my) X

charge. This is most easily seen?inwhich is related to the
gradient term of the free energy. Note that terms of this kind (3.8
are also present in conventional superconductors. On t

other hand, the vector densily is anomalous and charac- X . L
teristic of chiral superconducgrs electric charge whose sign depends on the chiralityrhe

For the sake of simplicity we assume that the reIativeseconOI term is nonvanishi_ng onl_y yvhen the mo_du_lus of the
phase of the order parameter component is fixed, ie., order paramrj:ter.bas spatial variation. Terms similar to the
=|n,lexp(#) and p,=is|7,/exp(¢) with s= =1, wheres  latter also exist irp. o _ o
is the chirality of thep-wave order parameter. This condition _ he modified London equation is obtained by variation of
is satisfied in the situations we will study below. In this case/ d°r (Le+ F) with respect toA:
we havei (7] n— 75 1y) =2¢| 7,/| ny|. The vectodl can be
written as

4e
== %8| 77x|| 77y|Bz(C3_C4)

Vot 2oa
¢+ A

h1ehe first term indicates that the magnetic fi@dnduces the

) 4ar ~
VA+ T(J+J+Y)=O, (3.9

2e -
HZZS(CS_C4)|7/><||77y| Vot %A Xz 3.7

where we find three current contributions. The first two,

IM(K 7% Dy 7y Ko my Dy +Kani Dyny+ Kymy Dy 7y)
J=——| Im(Kyny Dyny+Kyn} Dymy+Kany Dymy+Kany Dyny) (3.108
IM(Ks 7% D75+ Ks 77y D, 7y)
and

|m(R177: Dx77x+R277; Dx77y+R377: Dy77y+k477; Dy77x)
J= —Ao>- |m(R177§ Dy77y+R277: Dy77x+R377; Dx7]x+k47/: Dx’?y) ) (3.10b
Im(RSW: Damxt K577;/c D2ny)

are the supercurrents including the screening currents. Theause dissipation becauBeY=0. Both anomalous compo-
second one contributes only if the scalar potential deviategentsIl andY are proportional to the chirality and origi-

from its bulk valueAy=0. The last term nate from the CS-like term. We would like to emphasize here
that the presence of the anomalous current contribution does
not affect the standard flux quantization. The curraht
quickly drops to zero inside the superconducting material
because the electrical field is strongly screened. Thus even a
is the anomalous contribution, where the electric field acts akole containing a net charge would not violate standard flux
a source of supercurrent. Note, however, thatoes not quantization®

2e -
Y=i—5-(C3=Cy)(mmy — mi my)EXZ  (3.100
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IV. TRANSVERSE VOLTAGE IN THE GL DESCRIPTION with 7]%: |a]/2b; and the coherence Iengtf?=2K1/|a|.

Now we shall study the SHE in a Hall bar geometry on Note thatz, vanishes linearly at=0 whereasy, stays con-

the level of the extended GL theory. Since we concluded irpi@nt: If the condition(4.3 is not satisfied,, deviates

the BdG study that the relevant physics lies in the behavioP! 9Nty atx=¢ from the bulk valuer,, but generally does

of the superconductor close to the surface whose influence [0t Vanish ax=0, as we have seen in the BAG study. In
exponentially small in the interior, we concentrate only ondeneral the order parameter shows the following feature: the

one edge and consider the half-space0. The physics of a cor_nponent ofy n'ormal to the surface vanishes linearly
Hall bar of a given width_, follows in a simple way from while the perpendicular component is only weakly affected.
the results obtained for a gingle edge. As the detailed spatial dependencespfs not important for

our semiquantitative discussion, we will use an approximate
form for #,, instead of Eq(4.4), which allows us to proceed
with analytic calculations more easily,

The boundary conditions for the order parameter are cho-
sen assuming specular surface scattering. For the given ge-
ometry they read

A. The surface state

= no(1—e %), (4.5

We would like to mention that we have solved the coupled

GL equations for more general cases by numerical means to

confirm that our approximations work very well both quali-

implying that there is no current running normal through thetatively and quantitatively.

Surfacez_3 We need to consider On|y thecomponent of the HaVing determined the prOf”e of the order parameter, we

electric field and the component of the magnetic field, both can calculate the distribution of the Charge and the spontane-

of which are continuous at the surface and are functions of 0us current in the equilibrium state from EqS8.6) and

It can be easily shown that these boundary conditions ar€3.10. The equations for the scalar and vector potential have

compatible with the gauge invariance of,. The self- the following form:

inductancel and the capacitancg of our system are taken 5

to be infinity and zero, respectively, such that net currentand d°A0 Ao & 1_e ¥t % &y

total charge in the system should vanish, unless they are gy2 |2 Il( © )dx

imposed by external sources. This is important for the choice

of the boundary conditions for the gauge fields. Af, 4mn 5
We present an approximate solution to the GL equation = [2C,e ¢~ (4C +K e 2],

Mulx=0=0 and Dy7|x—0=0, (4.1

that captures the essential aspects of the problem. We assume el(x) ¢
that the system is in a chirptwave state of a single domain (4.6
with the chiralitye. First we solve the GL equations to de-
termine the spatial dependence of the order paramgt&o d?A, A, e e8P0 BAy L 2A0A
this end we ignore the gauge fields, in the GL equation. > (e )=+ ——e Tt -
This i : S dx A2 Iy dx = &l els(x)
is is allowed because we are looking for a solution in
lowest order inT=(T,—T)/T., a small parameter in the e
theory. The GL equations fop,=| 7, and ,=ie|7,| are = —88\'46”(’5, 4.7

d?| 7y 5 ) where we have introduced parametkréi =1—4) that have
K1 a2 :a|77x|+2b1|77x| +(2b1_b2+b3)|7]x||7]y| ) dimension of length
(4.29 1 16mwen]
2 E:T(%_C“)’ (4.89
d<»ny
K =a|n,|+2b 3+ (2b;—by+bg)| 2 7).
2 a2 |77y| 1| 77y| 1 2 3 |77x| |77y| 1 167767]5,, -
(4.2b L= hc N (4.8b
To simplify the analysis we consider a special situation
where the coefficienty; in the GL free energy satisfy the 1 _164-re3773 -~ N2
relation L0 pecz [Ki+Ky(1-e775)7],  (4.80
2b1:b2_b3, (43) 1 16#7]5)\'(3
which, however, is not satisfied for a cylindrical Fermi sur- E_ hc (4.80
face in the weak-coupling limitsee Sec. ¥ Under this con- ) o
dition Egs.(4.2a and(4.2b have the solution The London penetration depthis given by
X 1 32me?n}
ny= notanl‘(g), ny=ieng (4.9 F:—ﬁzcz Ki+Ky). 4.9
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In deriving Eq.(4.7) we have replaced o _ < dZA(yO)(X) ce P

VT T A g CAmlgNE -1
(26 ¥E— g 2x) (4.14
where the first term is related to the spontaneous current due

by A2 ignoring the spatial dependence. This approximanontﬁ the chiral Anfdtrﬁev bound sctjatets and trt]ﬁ second term is
weakly affects a numerical factor in the final expression ofi'€ résponse of the superconductor, i.e., the screening cur-
the Hall voltage. rent. Thus the net current is zero in the absence of an exter-

For temperatures close to the onset of superconductwﬂWalRmaglrt]e“Cb?e_ld' d for th Cinfinit i b
7=(T.—T)/T. is a small parameter which allows for a con- esults obtained for he semr-infinite geometry can be

trolled approximation. From the standard temperature deper?aSlly carried over to a Hall bar that extends fram0 to
dence ofzg, & and\, it is clear that . When the widthL, of the Hall bar is much larger

than)\ the two surfaces are basically disconnected electro-
1 magnetically. The gauge fields for the Hall bar geometry are
—=0(7). (4.10 then obtained by combining the contributions from the two
I edges. The scalar potential A£")(x) +A{ (L,—x), while

the vector potential i\{"(x) — A{(L,—x).

We first consider the case of vanishing external fields, i.e.,
E=B=0 in the vacuum X<0). This means that the net
charge and current in the superconductor are zero. In this ] o
obey the boundary condltlord;Aoo)/dx dA©/dx=0 atx applied to the semi-infinite system. Weak perturbations in-

0 2 0)  troduce corrections to the gauge fieldg,= A+ 5A, and
=0. From Eq.(4.10 we see thatA{=0(7?) and A" . gaug ©=A0 T %R0
— O(7?) sincel=0(%) andl<&\. In lowest order inr A=A+ A, We would like to obtaindA,, in linear re-
we find sponse to the external perturbation. We can, therefore, lin-
earize the Maxwell equations i#A , :

(Kefxlg_ efx/)\),

1
A2 o

K1+ K,

B. Response to external fields

e « 2
A&o)(x)zgl_ —— (ke —e ), (4.11) d6Ag GA & " dsA, i(i_}_ i) e E oA,
4 K _1 dX2 |2 Il dX g |1 |2
d (0)( ) §,0)
€ X _
A(()O)(X):—|2 _(l_efxlg) Ay + ela(x) 5Ay 0, (4.1
l1 dx
el1 1 | d?sA, OA, & L dSA, &
=+ =A@ —xlé_ _ p(0) =x/ — 2 (1-e¥H——4 e ¥isA
+§ |1+|2){Ay (x)e gAy (0)e o 2 Il( ax ', 0
2
(0)(x)12 (0) (0)
el (X)[A (x)] ~ el (Ao A+ A 8AG) =0. (4.16
A 770 g owlé (1) In the first case a weak external magnetic fiBlis
* 2C,e (4C1+Kye present in the vacuum, which corresponds to a finite net cur-

rent running in they direction. The boundary conditions are
] déAy/dx=0 andddA,/dx=B atx=0. In leading orders in

2l
+ —(3C,+Kye ™ (412 7 we obtain

£
SAMN(x)= —\Be ™, (4.17
wherex=\/£. This gives the total magnetic flux per length,
I
e « SAS(x)=—eBI? —|e N 1—e ¥+ ce7X
q><°>=f dxB,(x) =~ A{P(0)= —er — . (4.13 0 Iy £
4 K+ 1
. 0) - . _ 1 1 —XIN—=XI& _ | —XIN—=x/1
Note that the vector potentlaA§,) is proportional toe K EJFE € z€
whereas the scalar potential is independent of the chirality.
For both the scalar and the vector potential the London pen- ), 2 « e
etration depth constitutes the longest length scale of varia- - Ke Iy 2—1|13(%) (ke
tion, because they are coupled together. The charge density 4K
— (1/47)d?A)/dx? has dipolar form as found in the BdG |
calculation. The total current density is —e Y&~ I(—O)e*X"(K— 1)} . (4.18
3
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We note that the sign of the scalar potential in linear re- The mean-field Hamiltonian appropriate for the discus-
sponse tdB depends on the chirality. sion of the chiralp-wave statg1.1) is already given in Eq.
This result can be used to determine the transverse vol{2.1). The static electromagnetic fields are governed by
age in the Hall bar. We assume that the induced current flows
symmetrically on the two edges. Formally this situation is
realized by applying the fiel8Z @ (—x)— @ (x—L,)]. The
change of the scalar potential BASY(x)— SAD(L,—x), _ _ . .
leading to a finite transverse voltage across the Hall bapvhered is the distance between the two-dimensional layers.
Vi =Ag(L,) — Ag(0)=— 25A§)1)(0)- Now we carmake con- The sign of the_ second term was chosen n_egatlve SO that the
nection to the SHE in a two-dimensional system or in aMaxwell equations can be obtained by taking the functional

layered system such as,8u0Q,, where the system consists derivative OU d*r (M + Hew) W'th respect thM' Wh'Ch
of layers &y planes separated by a distanck The total should be viewed as the Lagrangian in imaginary time.
current per layet is related to the external magnetic field by ~ We integrate out the electron fielgs,, andy, to obtain
| =cdB/27. From Eq.(4.18 we find the effective functionaF o« for » andA

d 2 2
Hew=g-[(VXA)*=(VAg)?], (5.1

4171?
Vy=el——| —

cd
where we have kept only the leading terms, which are pro- ;{ 1
<o -1

(l 1) 2\ K
K

J— —_t— —
|1 |2 |3(O)|4 k+1

. @19 exp—FulkeT)= f 1 o720,

portional to7. The parameters entering this expression will 7

be derived from a microscopic model in the weak-coupling
limit in the next section.
(2) We now turn to the second case where a weak external +H et Hem)

electric fieldEx is applied to the superconductor, inducing a

finite surface charge. A similar problem was recently dis-

where the electron field operatogs,(r) and T(r) in H
cussed by Goryo and Ishikaw&The boundary conditions P , () . Vol )— MF
here ared 5A,/dx= — E andd A, /dx=0 atx=0. In lowest (2.1) are replaced by Grassman fields(r.it) and ¢, (r.it),

: : . respectively. The GL equations are then obtained by taking
orders inr we find the solution to Eqg4.19 and(4.18, the functional derivative oF . with respect ton andA,, .

5A£,2)(x)= Ele /! (4.20 We calculateF . in powers ofy; andA , up to the orderr;i“,
Di”]jDk”il s AODi77jDk7]|1 and Ei7]jDk7]| in the weak-
coupling limit, | | <#?kZ/2m. The calculation is tedious but

hlkgT —
dtj d?r (i, oip,

0

: (5.2

X+ 2l I 2| K

5A§,2)(x)~—sEI2e_X“(

L& + 1,6 15(0)l, k+1 straightforward, and only the final result is presented below.
The functionalF o so obtained has the form
T ( +1) 2\ K
& e K| T T A A
1 lo) 1s(0)la wrd Feﬁzf &r(F+ Lo). (5.3
(4.2

The external electric field changes the local configuration off he free energy padf, which is defined in Eq(3.2) as the
electric current and magnetic field in the chiral superconfree-energy density ithreedimensions, has the standard co-
ductor. The induced vector potentiéA§,2) depends on the efficients

chirality €. The total change in the magnetic fldger unit

length along they direction at the surfageas a=_ ZN(O) (5.49
2 ' '
5= — SAD(0) = oI | T4 |4 N X
= oA(0)=e 171, 100, k1)

b, b b 7Z(3)N(0
(4.22 3T maar O
Note the similarity between Eq§t.19 and(4.22) indicating AmkaTe)

that the two phenomena indeed have a common origin.
Ky 7£(3)N(0)
3 e KeTKeT g
V. THE WEAK-COUPLING COEFFICIENTS
OF THE GL THEORY

hl)':
WkBTC

2
I e

where T, depends on the coupling constampin the usual
In this section we calculate the coefficients of the GL freeexponential formkgT.= w.exd —2/gN(0)] with «. being
energy in the weak-coupling limit using a model with layersthe cutoff energy scale, ard(0)=m/(27%2d) is the den-
of two-dimensional electron gas, where electrons are corsity of statesper spin) at the Fermi level. The result5.4)
fined in each layer. Furthermore we ignore any spatial variaare valid in lowest order ihg|/w, where we findK ;=K. If
tion of electromagnetic fields in the direction perpendicularwe assume that the density of states had a weak energy de-
to the layers. pendence with energy derivative N'(0)~N(0)/u
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=mz/(7rﬁ4k,2:d) at the Fermi surface, then there would be asuperfluid density doasot have the reduction factor found in

tiny difference betweei; andK,, yielding the contribution
to the free energy density

C
2e wp

n( T )[i )X (0)]-B

_etN'(0)

27 8cm

2
No7
: 0|n< (5.5
2u?

whereC=0.572 . . . is theEuler's constantn,=k2/27d is
the electron density, angk is the magnetic momentper

electron of a Cooper pair in the chirg-wave state

ZeCC!)D
7T, K5

~ MB
MI—ﬁiﬁmUﬁnﬂ- (5.6)

7o
Here ug=ef/2mc is the Bohr magneton. Equatidb.5) is

the Zeeman energy for the intrinsic magnetic moment of the

chiral p-wave state. As is well knowf? it is diminished
by the factor ¢/ x)? which indicates the degree of particle-
hole asymmetry at the Fermi level. Since this contribution i
very small, we can ignore it in the following analysis.

From the coefficients in Eq5.4) we immediately obtain
the order parameter

- 87
70(T)=7kgTc\/ 743)

the coherence length

2Ky hve [214(3)
ED=NTal ket V 327

and the London penetration depth

\(T)= hc 1 _c 1
( )_2en0 V8m(K,+K,) evr V8mrN(0)"

(5.9

The second contribution to the free energy has the fol-
lowing coefficients:

(5.7

(5.9

LN (5.108
:e y .
817l
Ry — 7((3)e
— =K,=K,=K = 510
3 2 Y Y 128md(wkaT,)2 (5100
C 7¢(3)e
Ci=Cp=- Pcm ¥ 50
3 256md(7kgT,)

Notice thatK;=edK;/du. This relation can be easily under-
stood, if we regarce A, as a spatial variation ofc. In the
course of deriving Egs(5.10h and (5.109 we have natu-

rally assumed that the momentuknin d(k)=2(n- K)/kg is

close to the Fermi surface. The CS-like term describing the

S

Eqg. (5.5, in agreement with the argument by Volovik and
Mineey2>28

From Egs.(5.4) and(5.10 we obtain the parameters ap-
pearing in Eqs(4.19 and (4.22:

l, #cd

- 1:2 - 2627-, (5.113
A B 3e?r 511
13(0)l, 4#cd’ (5.118

Now we may express the results for the two cases dis-
cussed in the last section in terms of the microscopic param-
eters. The Hall voltage induced by an external current is
found to be

K
Vy 8I16(ek,:)\)2<2K+ K+1) (5.12
in the leading order inr. Here we have made use of the
relation (KeN)2=mdc?d/4e?r. We find a strong reduction
compared with the quantum unit of resistarRg=h/2e?.
The factor 1/keN)? can be also written as Hgy/no,
where ng is the superfluid density a”)ZJ:MéN(O)::”Xom
corresponding to the orbital susceptibility. We can thus re-
write Eq.(5.12 as

N 3k
k+1

hyx
e2

a
Vy=el 2k , (5.13

wherey=ns/ny= 27 is the ratio of the superfluid density to

the electron density. Obviously the Hall resistance strongly
depends on material dependent parameters and is also rather
severely reduced from the universal value?. In Sec. VI

we will analyze the quantitative aspect in more detail.

We turn now to the reciprocal ca$g). Here the effect is
more subtle as the response to an external electric field con-
stitutes a change of the field distribution in the vicinity of the
surface. Since there is already spontaneous magnetization
generated by the surface currents, we estimate the relative
change of the total magnetic flux

<3
K+ 2]

The electric fieldE should be smaller thaa/el in order to
avoid nonlinear effects that arise from the field effect on the
superconducting order parameter at the surface. Therefore
the induced change of flug® would only be a very small
fraction of the spontaneous magnetic fi®).

sb  SAP(0)  eEP
@ AP(0) M

(5.19

VI. DISCUSSION BASED ON HYDRODYNAMIC

EQUATIONS
A. The hydrodynamic equations

In the previous sections we have considered the SHE us-

reaction of the intrinsic magnetic moment to a change in theng the self-consistent solution of the BdG equationTat

054514-12



SPONTANEOUS HALL EFFECT IN A CHIRALp-WAVE . . . PHYSICAL REVIEW B 64 054514

=0 and the extended GL theory negy. In this section we __ 8e
introduce a phenomenological description based on the sta- _lclh_cf d3r (7% ny— 75 70 (AydxAo— AcdyAo)
tionary hydrodynamic equations. This approach can provide
an interpolation between the two limits and allow us to have _8e . Ay .
a simple intuitive understanding of the physics involved. Our = |Clﬁ_cf d°rAgV -[AXZ( 775 py— 75 7%)]
starting point is the phenomenological Lagrangian
+surface term (6.5
F:j d3r f+eA0£_ i(VAO)z in the chiralp-wave state whereyy 7, is imaginary. This
du 8w gives the remaining term2AN(0)n.V - (uX A). With the

help of the identityV - (uxX A) =A- (VX u) — - (VX A), we
6.1) find thatV - (uX A) represents the coupling of the magnetic
' ' currentV X u to the vector potential as well as the Zeeman
energy of the magnetic momept It is important to realize
which describes electromagnetic properties of a supercorhat the full magnetic moment of a chiral Cooper pair ap-
ductor. In the chiralp-wave state the Lagrangian densfty pears here, without reduction found in E§.5). The scalar
may be written as potential induces a change in the number of Cooper pairs,
which is necessarily accompanied by the change of the full
6.2 magnetic moment per Cooper pair.
We now take the variation d¥ with respect toA to obtain
the extended London equation

1
A%t

1 2
_877|2 _W(VXA)

8

m
f=ng E(vs+v0)2+V-(;L><A) ,

wherev = (e/mc)A anduv, is the velocity of the supercur-
rent generated by the spatial dependence of the order param-

1 4ar.

eter V2A— —A+ —j =0, (6.6)
A2 ¢
* *
(%x) h IM(3 7% At 1y dxny) with the current density
Vo= - 2| | Im(37%dyn,+ 7% dyny)
voy/ 8mump YRy ey j=—nevo—2eyN(0)[eA(vs+vy)+CEXp].  (6.7)
Im( 7% dymy+ 15 dy75) The variation ofF with respect toA, yields
+ Im( 77:‘9x77y+ 77; Amd | | 6.3 1 8meN(0)

VZAO— |—2A0+ n—fzo (6.9

0

The first term corresponds to the ordinary supercurrent due

to phase gradient, while the second term is connected witlince the Thomas-Fermi screening lengtis much shorter

the spontaneous current due to texture of the order paranthan ¢ and\, we may ignorev2A, to obtain immediately
eter. The latter is equivalent to the surface current of the

chiral edge states and will be important for our discussion. ng [m )

The partial derivative in Eq(6.1) acts onng as Ao:a 5 (st )"+ V- (XA, (6.9
dng dng dng which we may call a generalized Bernoulli equation. The
m:a_nomzzﬁ\'(o)' (6.4 first term represents a Bernoulli force coming from the ki-

netic energy of superfluid. In conventional superconductors

where y=n¢/ng is the ratio of the superfluid density; to  without broken time-reversal symmetry, the spontaneous
the electron density0=k§/2wd. We know the two limiting  current is absent. In such a case a supercurrénjected
values ofy: y=1 atT=0 andy=2r nearT,. from an external current source can generate a transverse

The Lagrangian densit§ can be deduced from the GL potential difference proportional 02.2°=31 On the other
Lagrangian in the following way. In the chiratwave state hand, in the case of our interest where a spontaneous current
we may assume without loss of generality thgf 7, is flows along a boundaryv(;#0), an external current can in-
imaginary. With the weak-coupling resifi.40, it is easy to  duce a transverse potential difference proportiondl fbhe
confirm that theK; terms inF (3.2) generatensmvg v, in  Second term in E¢(6.9) i; characterigtic of the'chireptwave
addition tong(m/2)v?2. The latter term can be obtained with State where Cooper pairs have their magnetic moment. Both
the approximation 77X|2:|77y|2: 77(2)_ It is then natural to t€rms are important in the SHE and in its reciprocal effect.
complete the square to makguv+ v,)%/2, which is nothing
but the kinetic energy of the superfluid in the presence of the ~ B. Spontaneous Hall effect and its reciprocal effect
spontaneous flow with the velocity,. From the relation Let us study the spontaneous Hall effect using the hydro-
Ki=edK;/du, one can also see that thg terms lead to the dynamic equations. As in Sec. IV, we consider a chiral
kinetic energy contribution t@Aydf/dw. Furthermore, we p-wave superconductor with a boundaryxat0 only. The
find from Egs.(3.4) and (5.100 that theC; terms have a superconductor occupies the positieegion and the system
contribution is translationally invariant in thg andz directions. We sup-
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pose that the spatial profile of the order parameiér) Vy  2whngy dof

=(7x(x),ny(x)) is already determined self-consistently in T 2 m( T dx

the equilibrium state. In particular, as we have observed in €070 x=0

the BdG calculation in Sec. Il, the order parameter satisfies " d77* dy
7x=dn,/dx=0 atx=0 under the assumption of the specu- +J ‘X’*Im( Mo Ty X) dx|. (6.16
lar reflection at the surface. We will calculate a linear re- 0 dx d

sponse to week electromagnetic perturbation.

The local variation ofp near the boundary yields a spon-
taneous current due to the order parameter texfure
= —ngsev;, Where

With the approximate fornf4.5) of the order parameter used
in Sec. IV, Eq.(6.16 becomes

Vi 27wh N K 6.1
5 g g RGP R 617
o= |m(7; Y ﬂ)&. 6.10 _ .
8mz3 *dx Y odx which compares well with Eq5.13.

The quantitative comparison with the self-consistent solu-
This current determines the vector potentia+ (0,A,,0)  tion of the BAG equations encounters some drawback from

obeying the London equation the fact that for the sake of numerical accuracy the cutoff

energyw, had to be taken comparable to the Fermi energy.

d2 1 e Therefore, there are larger strong-coupling corrections not

(_ — _) =—— . (6.11) included in our phenomenological analysis. Nevertheless, we
dx? A2 c find a reasonably good agreement between the phenomeno-

logical and the BdG estimates. The result from the numerical

whose solution under the boundary conditi@fh,=0 atx  BdG calculation kré&,=16 andl/&,=0.1) is
=01is

H 103 1.3, k=1 6.19
o —~—X10°X .
A(O)(X): 277)\] (ef\xfx'|/)\+e7|x+x'|/)x)jt(xl)dxl. I 2e? 0.5, k=2,
c Jo
(6.12  While Eq.(6.17 with the same parametefapart fromw,)
leads to
In particular, its boundary value is
Vi 103 {1.5, k=1 6.19
Y~ 3% .
TNA g [ dn} dni I 2e? 0.65, k=2.
AP0 =———| e Mm| g+ 7y 0| dx.
o 0 The discrepancy is not only a result of weak-coupling versus

(6.13 strong-coupling approach, but we would like to remind that
we have also used an approximate description of the order
parameter texture at the surface.

Obviously the resistance obtained here is considerably
S 'l smaller than the universal urite?. Now we would like to
source to the superconduct%r, yielding a small change in thgiig 4 connection between the SHE and the ordinary Hall
vector  potential A=A+ 5A,  where  SA(0)  gfect. We may look for the intrinsic magnetic field which
= —1(2m\/cd)y. Accordingly, the scalar potential acquires causes the Hall response to the externally induced cutrent

Having determinedy andA, we are now ready to obtain the
scalar potentiaA, from the generalized Bernoulli equation.
Suppose that a small currénis injected from an external

a small change, whose boundary value is Comparing Eq.(6.17) with the standard expression of the
Hall effect
5Ay(0) s sa ¢ A0+ Sy 4y 1 IH
o\V)=2 0~ | —5 ~ Uy Mm ) eff
e c =
rb mC2 Xx=0 H I’lOeC d 1 (62@
(6.14
we obtain the effective magnetic field
where we have used the fact that0 atx=0. The intrinsic
magnetic momenjt defined in Eq.(5.6) gives 1
Heff: TNgUBK 1+ 1T (621)

VXMZ% Im

(dﬂx dy’y)g, (6.15  The effective field corresponds to the density of magnetic
o

dx 't dx moments of Cooper pairs which is not the reduced magnetic

moment in Eq.(5.5, but rather the full moment which is
The spontaneous Hall voltage in the Hall bar geometry camssociated with the change of the Cooper pair density. Note
be related toSA, by the relationV,= —25A(0) as in Sec. that the factormx[1+ 1/(1+ k)] is due to inhomogeneous
IV. From EQgs.(6.10), (6.12), and(6.15 we obtain field and current distribution.
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Next we consider the reciprocal effect. In the presence othe surface and the interior of the superconductor is ex-
a weak external electric fielldE=EXx at x<0, the scalar Pected, which is proportional to the square of the running
potential in the superconductor receives a small perturbatiofurrent
S5Ao(x)=Ele " This yields a small change in the current
density V= 2,
- 2
ec?d’n,

The potential difference is actually independent of tempera-

ture as has been observéébr Pb. The method of measure-
~ ment was based on a thin-film capacitor which picks up the
Y, voltage signal caused by an ac-current on the superconductor

surface. The same kind of capacitor technique could also be
(6.22 used to detect the spontaneous Hall effect. In an ac-
measurement the above Bernoulli forcel £) yields the sec-
ond harmonic of the applied ac-current, while the signal cor-
responding to the SHE(I) contributes to the first harmonic.

A\ (= Hence we can distinguish the SHE from the standard Ber-
5Ay(0):Tfo e sjy(x)dx. (6.23  noulli effect. We can estimate the magnitude of the Hall
response

(6.2

S8j(x)=—2eyN(0) +COEX

e
e5A0( v+ — A
mc

2

—x/1 e € (0)
=—2ceyN(0O)Ee IEuter—A —

mcz Y

which determines the change in the vector potendAl
Solving the London equation, we find

Since the Thomas-Fermi screening lengis much shorter

than & and A, we may setv(X)=vy,(0), AP(x) Rilr _ h 1 o 6.27
=A0(0), and u,(x)=xu,(0) in 8j,(x) in the integrand. '
With this approximation we obtain

where |, is the total current running through a three-

A [e @2 o dus dimensional sample consisting Nf,y, layers. Using typical
SAY(0)=—E-~| Cuy —C2A§,) I values for ordinary metalgfor example,keA~200 at T
m x=0 =0), we obtainRy~0.1&). If 1;5/Njae~1 NA, then we
N expectVy~0.16 nV, which might be experimentally acces-

= Nsis N ( 7 d”X) sible. Under the same conditions the conventional Bernoulli
4en07;§ Y dx “—0 signal is considerably smalle¥,~1 pV. It is worth noting

that the capacitor technique in measuring the transverse po-

Z dny d 7y tential change does not require a Hall bar geometry, but a

+ fo e My e Ty g | 9X single surface is sufficient.

Unfortunately, in addition to the high sensitivity neces-
(6.24 sary in this kind of measurements a further problem has to be
The magnitude of the rati@Ay(O)/A§°)(0) may be esti- taken into account. This is the formation of domains of de-

mated from Eqs(6.13 and(6.24) for the approximate form generate superconducting states with opposite chiralities.

(4.5), yielding Such domain formation is very likely to occur when a system
enters the superconducting state. The two domains with op-
6A(0) eEP posite chiralities yield opposite sign of the transverse voltage
O - n (kT2), (6.25  so that the net effect might be diminished. Since the sponta-
Ay (0) # neous Hall voltage is a surface effect, the number of domain

in good agreement with the GL analysis. Unfortunately, inwalls intersecting the surface matters. It would be necessary
this case the comparison with the BdG result does not agrel@ establish an experimental technique to realize a single do-
well, which we attribute to the fact thhts comparable to the main phase, for example, by cooling in a weak magnetic
other length scales in the numerical calculation. Thus, theréeld.

are strong corrections to the above result in addition to the
strong-coupling corrections. VIl. NONCHIRAL TIME-REVERSAL SYMMETRY

BREAKING STATES

C. Experimental probe We now consider the possibility of a spontaneous Hall

Although the phenomenon we discuss in this paper can beffect in nonchiral time reversal symmetry breaking super-
compared to the standard Hall effect, it has actually someonductors. While for these superconducting states there is
quite distinct aspects. Flowing currents are an equilibriunmo anomalous CS-like coupling between scalar and vector
property of the superconductor. It is, therefore, impossible tgotential, there are still spontaneous surface currents for cer-
measure the transverse voltage by means of standard votkin orientations of the sample boundaries, despite the fact
meters, using direct contacts to the surfaces. This problerthat the Cooper pairs do not have a net angular momentum.
was realized already more than 30 years ago, when the Befhese surface currents can be associated with Andreev
noulli response to a current was investigated in conventionabound states. Thus we would expect at least to find a contri-
superconductor In this case a potential difference betweenbution to the SHE due to the Bernoulli force. We consider
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1

FIG. 4. Self-consistent solu-
tion of the Bogoliubov—de
Gennes equation for tH&00] sur-
face in thed,,+is-wave state at
T=0. The set of parameters are
the same as used in Fig. @) Or-
der parameter scaled g, which
is the magnitude of the order pa-
rameter for thed,, wave in the
bulk region. Ay and Ag are the
magnitude of the order parameter
of the d,, wave ands wave, re-
spectively.(b) Energy eigenvalues
obtained for sine basis functions.
L andR denote the surface bound
states localized near left and right
side surfaces, respectivelie) Di-
mensionless vector potentiad,
=(e&y/fic)A,, magnetic fieldb,
=&ydkay, and current density,
=—¢ydsb,. Total current isl
=5eAy/fikgé&y. (d) Dimension-

0.8

0.6

04

0.2

0 5 10 15 20

3 .
) . . . less scalar potentiddy=eAy /A,
“ 60 40 20 0 20 40 60 1 5 10 15 20 electric field &= —é&d,a,, and
charge density = &yd,ey .
kyf(2mLy) x/&

one of the well-known examples of a nonchiral superconfrom the index theorem. The electromagnetic properties in
ducting state in a quasi-two-dimensional system that violatethe Hall bar geometry, shown in Figsctand 4d), are very

time-reversal symmetry, thd+is-wave state. We assume similar to the chiral case. Also, the Hall resistafigfor the

that thed-wave state has the,, symmetry, for which a pgrameters indicated in the figure captjon is of sim.ilar mag-
spontaneous surface current runs along surfaces normal fitude. We thus conclude that for certain surfaqe orientations
the [100] or [010] direction?s It is possib'e here to express the me.asurement _Of the t[’al’lS\{erse Voltage N a- nonchiral
the spontaneous current again as a result of the order paraff@te gives a qualitatively identical result to a chiral state.

eter texture analogous to E(6.3): Hence, experiments of this kind on tfEL0] surface of high-.
temperature superconductors, where a low-temperature time-
Vix i [ Im(nEdyma+ m5dyms) reversal symmetry t_)r_eakmg phase may b_e present, Woul_d not
Vo= =— N « , (7.) be able to give decisive results as to which state is realized,
Uty 8mg \ IM( 775 Ix 770 17 9x7s) the nonchirald,z_y2+is-wave state or the chirati,z_,

where 7, and 74 denote the order parameters of thwave T 1dxswave state.

andd-wave component, respectively. The currents can be of
similar magnitude as for the chirptwave state and conse-
quently the size of the SHE is comparable. There are, of We have analyzed in detail the spontaneous Hall effect in
course, some differences from the former case. Since the twiime reversal symmetry breaking quasi-two-dimensional su-
pairing components are not degenerate in general, varioyserconductor of chiral and nonchiral nature. There are two
additional parameters may appear in the discussion. We hawntributions to the SHE. One is connected with the Ber-
performed a BAG calculation for a specific set of parametersoulli (or Lorent? force due to the presence of spontaneous
to verify the expectation of the above argument. surface currents. The other originates from the presence of an
Figure 4 shows the data obtained from the self-consistengrbital angular momentum of Cooper pairs. While the former
solution of the BdG equation for thel(, +is)-wave state at contribution appears in both types of superconducting states,
zero temperature. Here we present the results for the caskere is no angular momentum in the nonchiral case. We
where a finite net current is running in the system. Again thehave shown in our phenomenological treatment that the an-
order parameter shows strong variation at the surfacegular momentum gives rise to a Chern-Simons-like term in
whereby thed-wave component is suppressed andsheave  the Lagrangian determining the electromagnetism of the su-
component enhancé#ig. 4a)]. Looking at the quasiparticle perconductor, similar to derivations based on topological
spectrum in Fig. &), we see obvious differences between arguments:*® Although it was suggested that the Hall re-
the chiral and the nonchiral cases. In both cases there agponse would be, at least, close to a universal value, our
Andreev bound states below the ordinary continuous spectranalysis shows that the actual measurement of the Hall volt-
of scattering states. In the nonchiral case, however, there ige gives a considerably smaller nonuniversal value. Never-
no gapless edge mode, in accordance with the expectatiaheless, the comparison of the SHE with the ordinary Hall

VIIl. CONCLUSIONS
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effect reveals the presence of an intrinsic effective magnetic

PHYSICAL REVIEW B 64 054514
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