481 research outputs found

    High Metallicity of the X-Ray Gas up to the Virial Radius of a Binary Cluster of Galaxies: Evidence of Galactic Superwinds at High-Redshift

    Full text link
    We present an analysis of a Suzaku observation of the link region between the galaxy clusters A399 and A401. We obtained the metallicity of the intracluster medium (ICM) up to the cluster virial radii for the first time. We determine the metallicity where the virial radii of the two clusters cross each other (~2 Mpc away from their centers) and found that it is comparable to that in their inner regions (~0.2 Zsun). It is unlikely that the uniformity of metallicity up to the virial radii is due to mixing caused by a cluster collision. Since the ram-pressure is too small to strip the interstellar medium of galaxies around the virial radius of a cluster, the fairly high metallicity that we found there indicates that the metals in the ICM are not transported from member galaxies by ram-pressure stripping. Instead, the uniformity suggests that the proto-cluster region was extensively polluted with metals by extremely powerful outflows (superwinds) from galaxies before the clusters formed. We also searched for the oxygen emission from the warm--hot intergalactic medium in that region and obtained a strict upper limit of the hydrogen density (nH<4.1x10^-5 cm^-3).Comment: Typo corrected. The published version is available on-line free of charge by the end of 2008. http://pasj.asj.or.jp/v60/sp1/60s133/60s133.pd

    Metal-insulator transition and superconductivity in the spinel-type Cu(Ir1-xRhx)2S4 system

    Get PDF
    The normal thiospinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition around 226 K with structural transformation, showing hysteresis on heating and cooling. It has been verified that d electrons of Ir atom on the octahedral B sites have a significant role for the M-I transition. On the other hand, CuRh2S4 is a superconductor with the transition temperature Tc=4.70 K, which is well understood on the basis of the BCS theory. It is important to investigate the effect on the M-I transition by substitution of Rh for Ir. We have systematically studied structural transformation and electrical and magnetic properties of Cu(Ir1-xRhx)2S4. The features of the M-I transition change with Rh concentration x. A phase diagram of temperature versus x will be proposed for the Cu(Ir1-xRhx)2S4 system. The sharp M-I transition temperature varies drastically from 226 to 93 K with x from 0.00 to 0.17 and disappears around x=0.20. In a region of 0.00&les;x&les;0.20, the magnetic susceptibility begins decreasing at a constant onset temperature 226 K on cooling process and shows rather broad temperature variation, even though the metallic state is kept in the resistivity. The sharp M-I transition can take place after the suppression of magnitude in the susceptibility has sufficiently developed far below 226 K. These experimental results are discussed with emphasis on the intrinsic difference between Cu(Ir1-xRhx)2S4 and CuIr2(S1-xSex)4 systems. Furthermore, we will mention the superconductivity for both systems of Cu(Ir1-xRhx)2S4 with high-Rh concentration region and Cu1-xNixRh2S

    Metal-insulator transition in the spinel-type Cu1-xNixIr2S4 system

    Get PDF
    The normal thiospinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition around 230 K with structural transformation, showing hysteresis on heating and cooling. The symmetry changes from a high-temperature cubic phase in a metallic state to low-temperature tetragonal phase in an insulating state. A significant characteristic feature is the absence of localized magnetic moment below TM-I. On the other hand, NiIr2S4 remains metallic down to 4.2 K without the structural transformation. We have systematically studied the structural transformation and electrical and magnetic properties of Cu1-xNixIr2S4. The variation of the metal-insulator transition with Ni concentration x is presented. A phase diagram between TM-I and x will be provided for the Cu1-xNixIr2S4 system. The TM-I varies drastically from 226 to 88 K with x from 0.00 to 0.13 and disappears around x=0.15. For 0.08&les;x&les;0.13, the cubic and tetragonal phases coexist below TM-I. For a high-temperature metallic phase, the value of the Pauli paramagnetic susceptibility increases monotonically with x, which shows dD(&epsiv;)/d&epsiv;<0 at the Fermi energy &epsiv;F, through the decrease of the free-electron number density, where D(&epsiv;) is the electronic density-of-state on the basis of a nearly free-electron model. By the introduction of a Ni ion to the A-site of CuIr2S4 in the spinel structure, whether the localized magnetic moment below TM-I arises or not will be discusse

    Metal-insulator transition in the spinel-type CuIr2(S1-xSex)4 system

    Get PDF
    The thiospinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition around 226 K, showing hysteresis on heating and cooling, that manifests itself as a gap in the electronic density of state with increasing electrical resistivity at low temperatures. Conversely, CuIr2Se4 remains metallic down to 0.5 K. We have successfully synthesized the spinel-type compound CuIr2(S1-xSex)4 system. In order to see the effect of substitutions of Se at the S sites, we have carried out a systematic experimental study of structural, electrical, and magnetic properties of CuIr2(S1-xSex)4. Mössbauer spectroscopy measurements of 193Ir have been performed for CuIr2S4 and CuIr2Se4. The M-I transition of CuIr2(S1-xSex)4 for x&les;0.15 is accompanied by a structural transformation from tetragonal (low-temperature insulating phase) to cubic (high-temperature metallic phase) symmetry. With increasing Se concentration x, the sharp M-I transition shifts to lower temperature. The resistivity shows a monotonous increase with decreasing temperature for 0.17&les;x&les;0.78 between 4.2 and 300 K, and the metallic state is recovered for x&ges;0.80. Magnetic susceptibility measurements show the jump at the M-I transition temperature with hysteresis on heating and cooling. The high-temperature metallic phase of CuIr2S4 shows Pauli paramagnetism, having a density of states at the Fermi level, D(&epsiv;F)=0.67 states/eV atom. The insulating phase at low temperatures exhibits diamagnetism, and there is no localized magnetic moment. The Arrhenius regime is observed for the conductivity with a thermally activated process for 0&les;x&les;0.70 in the insulating phase. There is a general trend toward increasing metallicity with increasing x, which is consistent with the magnetic susceptibility results. A possibility of a two-site model of different valence states for Ir ions in the insulating phase of CuIr2S4 will be discussed on the basis of the Mössbauer data. A phase diagram of temperature versus Se concentration x will be proposed for the CuIr2(S1-xSex)4 system. The mechanism of the M-I transition remains enigmatic and is far from a complete pictur

    Automated detection method of thoracic aorta calcification from non-contrast CT images using mediastinal anatomical label map

    Get PDF
    Progression of thoracic aortic calcification (TAC) has been shown to be associated with hard cardiovascular events including stroke and all-cause mortality as well as coronary events. In this study, we propose an automated detection method of TACs of non-contrast CT images using mediastinal anatomical label map. This method consists of two steps: (1) the construction of a mediastinal anatomical label map, and (2) the detection of TACs using the intensity and the mediastinal anatomical label map. The proposed method was applied to two non-contrast CT image datasets: 24 cases of chronic thromboembolic pulmonary hypertension (CTEPH) and 100 non-CTEPH cases of low-dose CT screening. The method was compared with two-dimensional U-Nets and the Swin UNETR. The results showed that the method achieved significantly higher F1 score of 0.937 than other methods for the non-CTEPH case dataset (p-value < 0.05, pairwise Wilcoxon signed rank test with Bonferroni correction)

    Early expression of serum CCL8 closely correlates to non-relapse mortality after allogeneic hematopoietic stem cell transplantation

    Get PDF
    To explore the role of Chemokine (C-C motif) ligand 8 (CCL8) as a potential biomarker for acute graft-versus-host disease (aGVHD), we retrospectively analyzed the sera and clinical course of 31 patients with grade II?IV aGVHD. No deaths occurred in the ten patients with serum CCL8 concentrations less than 213 pg/mL, whereas 11 of the 21 patients with more than 213 pg/mL died within 180 days post-transplantation. This landmark analysis revealed a significantly lower urvival rate of patients with a CCL8 serum concentration greater than 213 pg/mL. Thus, elevated serum CCL8 concentration before day 100 post-transplantation may predict aGVHD prognosi

    The neural tides of sleep and consciousness revealed by single-pulse electrical brain stimulation

    Get PDF
    Wakefulness and sleep arise from global changes in brain physiology that may also govern the flow of neural activity between cortical regions responsible for perceptual processing vs planning and action. To test whether and how the sleep/wake cycle affects the overall propagation of neural activity in large-scale brain networks, we applied single-pulse electrical stimulation (SPES) in patients implanted with intracranial EEG electrodes for epilepsy surgery. SPES elicited cortico-cortical spectral responses at high-gamma frequencies (CCSRHG, 80-150 Hz), which indexes changes in neuronal population firing rates. Using event-related causality analysis (ERC), we found that the overall patterns of neural propagation among sites with CCSRHG were different during wakefulness and different sleep stages. For example, stimulation of frontal lobe elicited greater propagation toward parietal lobe during slow wave sleep than during wakefulness. During REM sleep, we observed a decrease in propagation within frontal lobe, and an increase in propagation within parietal lobe, elicited by frontal and parietal stimulation, respectively. These biases in the directionality of large-scale cortical network dynamics during REM sleep could potentially account for some of the unique experiential aspects of this sleep stage. Together these findings suggest that the regulation of conscious awareness and sleep is associated with differences in the balance of neural propagation across large-scale frontal-parietal networks

    Effect of octanoic acid-rich formula on plasma ghrelin levels in cachectic patients with chronic respiratory disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For cachectic patients with chronic respiratory disease (CRD), conventional enteral nutrition formula is an optional treatment to maintain energy balance. The molecular mechanisms by which enteral nutrition formula controls appetite and weight remain unknown. We examined whether enteral nutrition formula rich in octanoic acids would increase plasma levels of ghrelin, an appetite-stimulating hormone produced in the stomach, in cachectic patients with CRD.</p> <p>Methods</p> <p>Plasma ghrelin profiles in cachectic patients with CRD were assessed and compared with those in age- and sex-matched controls. Plasma levels of acyl-ghrelin, an active ghrelin modified by octanoic acids, and desacyl-ghrelin were measured separately. We examined changes in 24-h plasma ghrelin profiles before and after single administration of the formula. We also evaluated the effects of 2-week administration of the formula on plasma ghrelin levels and nutritional status in patients.</p> <p>Results</p> <p>The ratio of acyl-ghrelin to desacyl-ghrelin in plasma was lower in patients than in controls. Single administration of the formula did not change plasma desacyl-ghrelin levels, but induced an increase in acyl-ghrelin levels. Two-week treatment with the formula was effective in increasing weight and acyl-ghrelin, along with improving nutritional status in patients.</p> <p>Conclusion</p> <p>These results show that the formula contributes to increased weight, which may be associated with induction of acyl-ghrelin production in cachectic patients with CRD.</p

    EDITORIAL

    Get PDF
    Ligand-mediated drug delivery systems have enormous potential for improving the efficacy of cancer treatment. In particular, Arg-Gly-Asp peptides are promising ligand molecules for targeting α<sub>v</sub>β<sub>3</sub>/α<sub>v</sub>β<sub>5</sub> integrins, which are overexpressed in angiogenic sites and tumors, such as intractable human glioblastoma (U87MG). We here achieved highly efficient drug delivery to U87MG tumors by using a platinum anticancer drug-incorporating polymeric micelle (PM) with cyclic Arg-Gly-Asp (cRGD) ligand molecules. Intravital confocal laser scanning microscopy revealed that the cRGD-linked polymeric micelles (cRGD/m) accumulated rapidly and had high permeability from vessels into the tumor parenchyma compared with the PM having nontargeted ligand, “cyclic-Arg-Ala-Asp” (cRAD). As both cRGD/m- and cRAD-linked polymeric micelles have similar characteristics, including their size, surface charge, and the amount of incorporated drugs, it is likely that the selective and accelerated accumulation of cRGD/m into tumors occurred <i>via</i> an active internalization pathway, possibly transcytosis, thereby producing significant antitumor effects in an orthotopic mouse model of U87MG human glioblastoma
    corecore