12 research outputs found

    Characterization of neurokinin A-evoked salivary secretion in the perfused rat submandibular gland

    Get PDF
    Neurokinin A (NKA) evokes salivary secretion. Despite such reports, the direct effect of NKA on salivary secreteion in submandibular gland has not been clarified. Here we studied characterization of salivary fluid secretion induced by NKA in the perfused submandibular grand (SMG) of the rat. NKA (3-100 nM) stimulated salivary fluid secretion in a dose-dependent manner. The profile of secretion induced by NKA consisted of two phases, transient and sustained phases. When the gland was perfused with Lucifer yellow (LY)-containing perfusate buffer and stimulated by NKA, concentration of LY in saliva was increased. In the absence of Ca2+ in the perfusate, NKA induced only a transient salivary fluid and a transient LY secretion. When the gland was treated with BAPTA, NKA failed to induce both salivary fluid secretion and LY secretion. These results suggest that NKA induces salivary secretion via both transcellular and paracellular pathways, which depends on intracellular Ca2+ mobilization

    Role of protein kinase C-δ in isoproterenol-induced amylase release in rat parotid acinar cells

    Get PDF
    In parotid acinar cells, β-adrenergic receptor activation results in accumulation of intracellular cAMP. Subsequently, cAMP-dependent protein kinase (PKA) is activated and consequently amylase release is provoked. In this paper, we investigated involvement of protein kinase C-δ(PKCδ), a novel isoform of PKC, in amylase release induced by β-adrenergic receptor stimulation. Amylase release stimulated with the β-agonsit isoproterenol (IPR) was inhibited by rottlerin, an inhibitor of PKCδ. IPR activated PKCδ and the effect of IPR were inhibited by a PKA inhibitor, H89. Myristoylated alanine-rich C kinase substrate (MARCKS), a major cellular substrate for PKC, was detected in rat parotid acinar cells, and a MARCKS inhibitor, MARCKS-related peptide, inhibited the IPR-induced amylase release. IPR stimulated MARCKS phosphorylation, which was found to be inhibited by H89 and rottlerin. These observations suggest that PKCδ activation is a downstream pathway of PKA activation and is involved in amylase release via MARCKS phosphorylation in rat parotid acinar cells stimulated with β-adrenergic agonist

    The thiol-oxidizing agent diamide reduces isoproterenolstimulated amylase release in rat parotid acinar cells

    Get PDF
    In parotid acinar cells, activation of β-adrenergic receptors provokes exocytotic amylase release via the accumulation of intracellular cAMP. Cellular redox status plays a pivotal role in the regulation of various cellular functions. Cellular redox imbalance caused by the oxidation of cellular antioxidants, as a result of oxidative stress, induces significant biological damages. In this study, we examined effect of diamide, a thioloxidizing reagent, on amylase release in rat parotid acinar cells. In the presence of diamide, isoproterenol (IPR)-induced cAMP formation and amylase release were partially reduced. Diamide had no effect on amylase release induced by forskolin and mastoparan, an adenylate cyclase activator and heterotrimeric GTP binding protein activator, respectively. In the cells pretreated with diamide, the binding affinity of [3H]dihydroalprenolol to β-receptors was reduced. These results suggest that oxidative stress results in reduction of binding affinity of ligand on β-receptor and consequently reduces protein secretory function in rat parotid acinar cells

    Role of Innate Inflammation in the Regulation of Tissue Remodeling during Tooth Eruption

    No full text
    Tooth eruption is characterized by a coordinated complex cascade of cellular and molecular events that promote tooth movement through the eruptive pathway. During tooth eruption, the stratum intermedium structurally changes to the papillary layer with tooth organ development. We previously reported intercellular adhesion molecule-1 (ICAM-1) expression on the papillary layer, which is the origin of the ICAM-1-positive junctional epithelium. ICAM-1 expression is induced by proinflammatory cytokines, including interleukin-1 and tumor necrosis factor. Inflammatory reactions induce tissue degradation. Therefore, this study aimed to examine whether inflammatory reactions are involved in tooth eruption. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed sequential expression of hypoxia-induced factor-1α, interleukin-1β, and chemotactic factors, including keratinocyte-derived chemokine (KC) and macrophage inflammatory protein-2 (MIP-2), during tooth eruption. Consistent with the RT-PCR results, immunohistochemical analysis revealed KC and MIP-2 expression in the papillary layer cells of the enamel organ from the ameloblast maturation stage. Moreover, there was massive macrophage and neutrophil infiltration in the connective tissue between the tooth organ and oral epithelium during tooth eruption. These findings suggest that inflammatory reactions might be involved in the degradation of tissue overlying the tooth organ. Further, these reactions might be induced by hypoxia in the tissue overlying the tooth organ, which results from decreased capillaries in the tissue. Our findings indicate that bacterial infections are not associated with the eruption process. Therefore, tooth eruption might be regulated by innate inflammatory mechanisms
    corecore