148 research outputs found

    The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity

    Get PDF
    The myristoylated form of c-Abl protein, as well as the P210bcr/abl protein, have been shown by indirect immunofluorescence to associate with F-actin stress fibers in fibroblasts. Analysis of deletion mutants of c-Abl stably expressed in fibroblasts maps the domain responsible for this interaction to the extreme COOH-terminus of Abl. This domain mediates the association of a heterologous protein with F-actin filaments after microinjection into NIH 3T3 cells, and directly binds to F-actin in a cosedimentation assay. Microinjection and cosedimentation assays localize the actin-binding domain to a 58 amino acid region, including a charged motif at the extreme COOH-terminus that is important for efficient binding. F-actin binding by Abl is calcium independent, and Abl competes with gelsolin for binding to F- actin. In addition to the F-actin binding domain, the COOH-terminus of Abl contains a proline-rich region that mediates binding and sequestration of G-actin, and the Abl F- and G-actin binding domains cooperate to bundle F-actin filaments in vitro. The COOH terminus of Abl thus confers several novel localizing functions upon the protein, including actin binding, nuclear localization, and DNA binding. Abl may modify and receive signals from the F-actin cytoskeleton in vivo, and is an ideal candidate to mediate signal transduction from the cell surface and cytoskeleton to the nucleus

    Maximal Force Characteristics of the Ca\u3csup\u3e2+\u3c/sup\u3e-Powered Actuator of \u3ci\u3eVorticella convallaria\u3c/i\u3e

    Get PDF
    The millisecond stalk contraction of the sessile ciliate Vorticella convallaria is powered by energy from Ca2+ binding to generate contractile forces of ~10 nN. Its contractile organelle, the spasmoneme, generates higher contractile force under increased stall resistances. By applying viscous drag force to contracting V. convallaria in a microfluidic channel, we observed that the mechanical force and work of the spasmoneme depended on the stalk length, i.e., the maximum tension (150–350 nN) and work linearly depended on the stalk length (~2.5 nN and ~30 fJ per 1 mm of the stalk). This stalk-length dependency suggests that motor units of the spasmoneme may be organized in such a way that the mechanical force and work of each unit cumulate in series along the spasmoneme

    STORM: A General Model to Determine the Number and Adaptive Changes of Epithelial Stem Cells in Teleost, Murine and Human Intestinal Tracts

    Get PDF
    Intestinal stem cells play a pivotal role in the epithelial tissue renewal, homeostasis and cancer development. The lack of a general marker for intestinal stem cells across species has hampered analysis of stem cell number in different species and their adaptive changes upon intestinal lesions or during development of cancer. Here a two-dimensional model, named STORM, has been developed to address this issue. By optimizing epithelium renewal dynamics, the model examines the epithelial stem cell number by taking experimental input information regarding epithelium proliferation and differentiation. As the results suggest, there are 2.0–4.1 epithelial stem cells on each pocket section of zebrafish intestine, 2.0–4.1 stem cells on each crypt section of murine small intestine and 1.8–3.5 stem cells on each crypt section of human duodenum. The model is able to provide quick results for stem cell number and its adaptive changes, which is not easy to measure through experiments. Its general applicability to different species makes it a valuable tool for analysis of intestinal stem cells under various pathological conditions.MIT-Singapore AllianceNational University of Singapore. Dept. of Biological Science

    Macrophage podosomes assemble at the leading lamella by growth and fragmentation

    Get PDF
    Podosomes are actin- and fimbrin-containing adhesions at the leading edge of macrophages. In cells transfected with β-actin–ECFP and L-fimbrin–EYFP, quantitative four-dimensional microscopy of podosome assembly shows that new adhesions arise at the cell periphery by one of two mechanisms; de novo podosome assembly, or fission of a precursor podosome into daughter podosomes. The large podosome cluster precursor also appears to be an adhesion structure; it contains actin, fimbrin, integrin, and is in close apposition to the substratum. Microtubule inhibitors paclitaxel and demecolcine inhibit the turnover and polarized formation of podosomes, but not the turnover rate of actin in these structures. Because daughter podosomes and podosome cluster precursors are preferentially located at the leading edge, they may play a critical role in continually generating new sites of cell adhesion

    Stored elastic energy powers the 60-μm extension of the Limulus polyphemus sperm actin bundle

    Get PDF
    During the 5 s of the acrosome reaction of Limulus polyphemus sperm, a 60-μm-long bundle of scruin-decorated actin filaments straightens from a coiled conformation and extends from the cell. To identify the motive force for this movement, we examined the possible sources of chemical and mechanical energy and show that the coil releases ∼10−13 J of stored mechanical strain energy, whereas chemical energy derived from calcium binding is ∼10−15 J. These measurements indicate that the coiled actin bundle extends by a spring-based mechanism, which is distinctly different from the better known polymerization or myosin-driven processes, and that calcium initiates but does not power the reaction

    Three-dimensional image cytometer based on widefield structured light microscopy and high-speed remote depth scanning

    Get PDF
    A high throughput 3D image cytometer have been developed that improves imaging speed by an order of magnitude over current technologies. This imaging speed improvement was realized by combining several key components. First, a depth-resolved image can be rapidly generated using a structured light reconstruction algorithm that requires only two wide field images, one with uniform illumination and the other with structured illumination. Second, depth scanning is implemented using the high speed remote depth scanning. Finally, the large field of view, high NA objective lens and the high pixelation, high frame rate sCMOS camera enable high resolution, high sensitivity imaging of a large cell population. This system can image at 800 cell/sec in 3D at submicron resolution corresponding to imaging 1 million cells in 20 min. The statistical accuracy of this instrument is verified by quantitatively measuring rare cell populations with ratio ranging from 1:1 to 1:10[superscript 5].National Institutes of Health (U.S.) (Grant 9P41EB015871-26A1)National Institutes of Health (U.S.) (Grant 5R01EY017656-02)National Institutes of Health (U.S.) (Grant 5R01 NS051320)National Institutes of Health (U.S.) (Grant 4R44EB012415-02)National Science Foundation (U.S.) (Grant CBET-0939511)Singapore-MIT Alliance for Research and TechnologyMIT Skoltech InitiativeHamamatsu CorporationDavid H. Koch Institute for Integrative Cancer Research at MIT (Bridge Project Initiative

    Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine

    Get PDF
    Background The zebrafish intestine is a simple tapered tube that is folded into three sections. However, whether the intestine is functionally similar along its length remains unknown. Thus, a systematic structural and functional characterization of the zebrafish intestine is desirable for future studies of the digestive tract and the intestinal biology and development. Results To characterize the structure and function of the adult zebrafish intestine, we divided the intestine into seven roughly equal-length segments, S1-S7, and systematically examined the morphology of the mucosal lining, histology of the epithelium, and molecular signatures from transcriptome analysis. Prominent morphological features are circumferentially-oriented villar ridges in segments S1-S6 and the absence of crypts. Molecular characterization of the transcriptome from each segment shows that segments S1-S5 are very similar while S6 and S7 unique. Gene ontology analyses reveal that S1-S5 express genes whose functions involve metabolism of carbohydrates, transport of lipids and energy generation, while the last two segments display relatively limited function. Based on comparative Gene Set Enrichment Analysis, the first five segments share strong similarity with human and mouse small intestine while S6 shows similarity with human cecum and rectum, and S7 with human rectum. The intestinal tract does not display the anatomical, morphological, and molecular signatures of a stomach and thus we conclude that this organ is absent from the zebrafish digestive system. Conclusions Our genome-wide gene expression data indicate that, despite the lack of crypts, the rostral, mid, and caudal portions of the zebrafish intestine have distinct functions analogous to the mammalian small and large intestine, respectively. Organization of ridge structures represents a unique feature of zebrafish intestine, though they produce similar cross sections to mammalian intestines. Evolutionary lack of stomach, crypts, Paneth cells and submucosal glands has shaped the zebrafish intestine into a simpler but unique organ in vertebrate intestinal biology.Singapore-MIT Alliance for Research and TechnologySingapore. Biomedical Research CouncilNational University of Singapor
    corecore