13 research outputs found

    Systems and methods for monitoring solids using mechanical resonator

    Get PDF
    Multi-phase system monitoringmethods, systems and apparatus aredisclosed. Preferred embodiments comprise one or more mechanical resonator sensing elements. In preferred embodiments a sensor or a sensor subassembly is ported to a fluidized bed vessel such as a fluidized bed polymerization reactor

    Generation of Tunable Narrow Bandwidth Nanosecond Pulses in the Deep Ultraviolet for Efficient Optical Pumping and High Resolution Spectroscopy

    Get PDF
    Nanosecond optical pulses with high power and spectral brightness in the deep ultraviolet (UV) region have been produced by sum frequency mixing of nearly transform-limited-bandwidth IR light originating from a home-built injection-seeded ring cavityoptical parametric oscillator(OPO) and the fourth harmonic beam of an injection-seeded Nd:YAG laser used simultaneously to pump the OPO with the second harmonic. We demonstrate UV output, tunable from 204 to 207 nm, which exhibits pulse energies up to 5 mJ with a bandwidth better than [Math Processing Error]. We describe how the approach shown in this paper can be extended to wavelengths shorter than 185 nm. The injection-seeded OPO provides high conversion efficiency ([Math Processing Error] overall energy conversion) and superior beam quality required for highly efficient downstream mixing where sum frequencies are generated in the UV. The frequency stability of the system is excellent, making it highly suitable for optical pumping. We demonstrate high resolution spectroscopy as well as optical pumping using laser-induced fluorescence and stimulated emission pumping, respectively, in supersonic pulsed molecular beams of nitric oxide

    Generation of Tunable Narrow Bandwidth Nanosecond Pulses in the Deep Ultraviolet for Efficient Optical Pumping and High Resolution Spectroscopy

    Get PDF
    Nanosecond optical pulses with high power and spectral brightness in the deep ultraviolet (UV) region have been produced by sum frequency mixing of nearly transform-limited-bandwidth IR light originating from a home-built injection-seeded ring cavityoptical parametric oscillator(OPO) and the fourth harmonic beam of an injection-seeded Nd:YAG laser used simultaneously to pump the OPO with the second harmonic. We demonstrate UV output, tunable from 204 to 207 nm, which exhibits pulse energies up to 5 mJ with a bandwidth better than [Math Processing Error]. We describe how the approach shown in this paper can be extended to wavelengths shorter than 185 nm. The injection-seeded OPO provides high conversion efficiency ([Math Processing Error] overall energy conversion) and superior beam quality required for highly efficient downstream mixing where sum frequencies are generated in the UV. The frequency stability of the system is excellent, making it highly suitable for optical pumping. We demonstrate high resolution spectroscopy as well as optical pumping using laser-induced fluorescence and stimulated emission pumping, respectively, in supersonic pulsed molecular beams of nitric oxide

    Machine fluid sensor and method

    Get PDF
    A method for analyzing a fluid contained within a machine, comprising the steps of providing a machine system (100) including a passage (104) for containing a fluid; placing a sensor (106) including a mechanical resonator in the passage; operating the resonator to have a portion thereof translate through the fluid; and monitoring the response of the resonator to the fluid in the passage. One specific sensor includes a tuning fork resonator

    Machine fluid sensor and method

    Get PDF
    A sensor for sensing one or more properties of a vehicle fluid has a tuning fork resonator adapted to contact the fluid. The tuning fork resonator comprises two tines and is operable to oscillate so that the two tines move in opposite phase at a frequency of less than 1 MHz while contacting the fluid to generate a resonator response indicative of one or lllore properties of the fluid. In another aspect, a sensor includes a substrate and a flexural resonator on the substrate and adapted to contact the fluid. Circuitry for operation of the resonator is on the substrate. The resonator is adapted to receive an input signal and to oscillate while contacting the fluid to generate a resonator response indicative of one or more properties of the fluid. One suitable application for the invention is monitoring the condition of a vehicle engine oil

    Vibrationally promoted electron emission at a metal surface: electron kinetic energy distributions

    Get PDF
    We report the first direct measurement of the kinetic energy of exoelectrons produced by collisions of vibrationally excited molecules with a low work function metal surface exhibiting electron excitations of 64% (most probable) and 95% (maximum) of the initial vibrational energy. This remarkable efficiency for vibrational-to-electronic energy transfer is in good agreement with previous results suggesting the coupling of multiple vibrational quanta to a single electron

    Machine Fluid Sensor

    Get PDF
    A sensor for sensing one or more properties of a vehicle fluid has a tuning fork resonator adapted to contact the fluid. The tuning fork resonator comprises two tines and is operable to oscillate so that the two tines move in opposite phase at a frequency of less than 1 MHz while contacting the fluid to generate a resonator response indicative of one or more properties of the fluid. In another aspect, a sensor includes a substrate and a flexural resonator on the substrate and adapted to eontact the fluid. Circuitry for operation of the resonator is on the substrate. The resonator is adapted to receive an input signal and to oscillate while contacting the fluid to generate a resonator response indicative of one or more properties of the fluid. One suitable application for the invention is monitoring the condition of a vehicle engine oi!
    corecore