33 research outputs found

    Nitrogen fertilization increases N2O emission but does not offset the reduced radiative forcing caused by the increased carbon uptake in boreal forests

    Get PDF
    Net primary production in boreal coniferous forests is generally severely limited by N deficiency. Nitrogen fertilization has thus the potential to strongly increase forest tree biomass production in the boreal region and consequently increase the biosphere uptake of atmospheric CO2. Increased N availability may though increase the production and emission of soil N2O, counteracting the climate mitigation potential from increased forest biomass production. Studies in the boreal region on the net effect on the climate mitigation potential from N fertilization are scarcer than in other biomes. Therefore, we explored how N affected soil GHG fluxes in two boreal field N-loading experiments, of which one is a long-term experiment (40 years), and the other established 6 years before investigation. We also estimated whether the increased soil N2O emission could offset the N-driven increased C sequestration by the trees. Nitrogen additions affected the soil GHG fluxes in both stands. Soil N2O emission was enhanced by N addition at every fertilization rate, though marginally compared to the reduced soil CO2 emission and the increased atmospheric CO2 uptake and biomass production. The estimated annual uptake of CH4 by soil under long-term N addition increased. The magnitude of soil CH4 uptake was on the same order of magnitude as the increase in soil N2O emissions caused by N addition, when compared as CO2 equivalents. In conclusion, forest N fertilization in boreal areas increased the GHG net uptake and, thus, provides a means to mitigate increasing atmospheric concentrations of GHG

    Topography and Time Shape Mire Morphometry and Large-Scale Mire Distribution Patterns in the Northern Boreal Landscape

    Get PDF
    Peatlands are major terrestrial soil carbon stores, and open mires in boreal landscapes hold a considerable fraction of the global peat carbon. Despite decades of study, large-scale spatiotemporal analyses of mire arrangement have been scarce, which has limited our ability to scale-up mire properties, such as carbon accumulation to the landscape level. Here, we use a land-uplift mire chronosequence in northern Sweden spanning 9,000 years to quantify controls on mire distribution patterns. Our objectives include assessing changes in the spatial arrangement of mires with land surface age, and understanding modifications by upland hydrotopography. Characterizing over 3,000 mires along a 30 km transect, we found that the time since land emergence from the sea was the dominant control over mire coverage, especially for the establishment of large mire complexes. Mires at the youngest end of the chronosequence were small with heterogenous morphometry (shape, slope, and catchment-to-mire areal ratios), while mires on the oldest surfaces were variable in size, but included larger mires with more complex shapes and smaller catchment-to-mire ratios. In general, complex topography fragmented mires by constraining the lateral expansion, resulting in a greater number of mires, but reduced total mire area regardless of landscape age. Mires in this study area occurred on slopes up to 4%, indicating a hydrological boundary to peatland expansion under local climatic conditions. The consistency in mire responses to spatiotemporal controls illustrates how temporal limitation in peat initiation and accumulation, and topographic constraints to mire expansion together have shaped present day mire distribution patterns

    Ditches show systematic impacts on soil and vegetation properties across the Swedish forest landscape

    Get PDF
    Novel mapping methods using AI have led to improved mapping of the extent of drainage systems, but the full scope of the effects of drainage on ecosystems has yet to be understood. By combining ditches mapped with remote sensing and AI methods with soil data from the Swedish Forest Soil Inventory, and vegetation data from the National Forest Inventory we identified 4 126 survey plots within 100 m of a ditch. The inventory data span across three biomes; the northern boreal zone, the hemiboreal zone, and the temperate zone. We explored if soils and vegetation close to ditches were indeed different from the surrounding landscape. The large number of plots spread widely across the Swedish forest landscape spanning different physiographic regions, climates, topography, soils, and vegetation made it possible to identify the general effect of drainage on soil properties, tree productivity, and plant species composition. We found a surprisingly large amount of ditches on mineral soils (50-70%, depending on the definition of peatlands). Forest growth was affected, with higher growth rates of trees closer to ditches, particularly Norway spruce. Sphagnum mosses - a key indicator of wet soils - were less common near ditches, where they were replaced by feather mosses. The soil bulk density was higher closer to ditches, as was the concentration of metals that are typically associated with organic matter (Al), while concentrations of metals with a lower affinity for organic material decreased toward ditches (Na, K, Mg). The results from mineral soils and peat soils often differed. For example, N and tree volume increased toward ditches, but on different levels for peat and mineral soils, while the thickness of the humus layer and Pleurozium schreberi cover showed opposite patterns for the different soils. Clearly, ditches have affected the entire Swedish forest landscape, driving it towards a drier, more spruce-dominated productive forested ecosystem and away from wetland ecosystems like mires and littoral areas along streams. Furthermore, the biogeochemistry of the soils and understory species cover near ditches have changed, potentially irreversibly, at least within human time frames, and have implications for restoration goals and the future of forestry

    Landscape constraints on mire lateral expansion

    Get PDF
    Little is known about the long-term expansion of mire ecosystems, despite their importance in the globalcarbon and hydrogeochemical cycles. It has been firmly established that mires do not expand linearlyover time. Despite this, mires are often assumed to have expanded at a constant rate after initiationsimply for lack of a better understanding. There has not yet been a serious attempt to determine the rateand drivers of mire expansion at the regional, or larger spatial scales. Here we make use of a naturalchronosequence, spanning the Holocene, which is provided by the retreating coastline of NorthernSweden. By studying an isostatic rebound area we can infer mire expansion dynamics by looking at theportion of the landscape where mires become progressively scarce as the land becomes younger. Ourresults confirms that mires expanded non-linearly across the landscape and that their expansion isrelated to the availability of suitably wet areas, which, in our case, depends primarily on the hydro-edaphic properties of the landscape. Importantly, we found that mires occupied the wettest locationsin the landscape within only one to two thousand years, while it took mires three to four thousand yearsto expand into slightly drier areas. Our results imply that the lateral expansion of mires, and thus peataccumulation is a non-linear process, occurring at different rates depending, above all else, on thewetness of the landscape

    Catchment characteristics control boreal mire nutrient regime and vegetation patterns over ~5000 years of landscape development

    Get PDF
    Vegetation holds the key to many properties that make natural mires unique, such as surface microtopography, high biodiversity values, effective carbon sequestration and regulation of water and nutrient fluxes across the landscape. Despite this, landscape controls behind mire vegetation patterns have previously been poorly described at large spatial scales, which limits the understanding of basic drivers underpinning mire ecosystem services. We studied catchment controls on mire nutrient regimes and vegetation patterns using a geographically constrained natural mire chronosequence along the isostatically rising coastline in Northern Sweden. By comparing mires of different ages, we can partition vegetation patterns caused by long-term mire succession

    The Kulbacksliden Research Infrastructure: a unique setting for northern peatland studies

    Get PDF
    Boreal peatlands represent a biogeochemically unique and diverse environment in high-latitude landscape. They represent a long-term globally significant sink for carbon dioxide and a source of methane, hence playing an important role in regulating the global climate. There is an increasing interest in deciphering peatland biogeochemical processes to improve our understanding of how anthropogenic and climate change effects regulate the peatland biogeochemistry and greenhouse gas balances. At present, most studies investigating land-atmosphere exchanges of peatland ecosystems are commonly based on single-tower setups, which require the assumption of homogeneous conditions during upscaling to the landscape. However, the spatial organization of peatland complexes might feature large heterogeneity due to its varying underlying topography and vegetation composition. Little is known about how well single site studies represent the spatial variations of biogeochemical processes across entire peatland complexes. The recently established Kulbacksliden Research Infrastructure (KRI) includes five peatland study sites located less than 3 km apart, thus providing a unique opportunity to explore the spatial variation in ecosystem-scale processes across a typical boreal peatland complex. All KRI sites are equipped with eddy covariance flux towers combined with installations for detailed monitoring of biotic and abiotic variables, as well as catchment-scale hydrology and hydrochemistry. Here, we review studies that were conducted in the Kulbacksliden area and provide a description of the site characteristics as well as the instrumentation available at the KRI. We highlight the value of long-term infrastructures with ecosystem-scale and replicated experimental sites to advance our understanding of peatland biogeochemistry, hydrology, ecology, and its feedbacks on the environment and climate system

    Forest streams are important sources for nitrous oxide emissions - Nitrous oxide emissions from Swedish streams

    Get PDF
    Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2O). N2O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2O concentrations of 1.6 +/- 2.1 and 1.3 +/- 1.8 mu g N/L, respectively (mean +/- SD) despite higher total N (TN) concentrations in agricultural streams (1,520 +/- 1,640 vs. 780 +/- 600 mu g N/L). Although clear patterns linking N2O concentrations and environmental variables were difficult to discern, the percent saturation of N2O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2O emissions. An estimate of the N2O emission from low-order streams at the national scale revealed that ~1.8 x 10(9) g N2O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2O sources in the landscape with 800 x 10(9) g CO2-eq emitted annually in Sweden, equivalent to 25% of the total N2O emissions from the Swedish agricultural sector

    Fostering breakthrough research

    No full text

    A Simplified Drying Procedure for Analysing Hg Concentrations

    Get PDF
    Mercury (Hg) in peatlands remains a problem of global interest. To mitigate the risks of this neurotoxin, accurate assessments of Hg in peat are needed. Treatment of peat that will be analysed for Hg is, however, not straightforward due to the volatile nature of Hg. The drying process is of particular concern since Hg evasion increases with the temperature. Samples are, therefore, often freeze-dried to limit Hg loss during the drying processes. A problem with freeze-drying is that cost and equipment resources can limit the number of samples analysed in large projects. To avoid this bottleneck, we tested if drying in a 60 degrees C-degree oven could be an acceptable alternative to freeze-drying. We both freeze-dried and oven-dried (60 degrees C) 203 replicate pairs of peat samples, and then examined the differences in total Hg concentration. The Hg concentration differed significantly between the two drying methods with a median Hg deficit in oven-dried samples of 4.2%. Whether a 4.2% deficit of Hg depends on one's purpose. The lower median Hg concentration in oven-dried samples has to be weighed against the upside efficiently drying large sets of peat samples. By freeze-drying a subset of the samples, we fitted a function to correct for Hg loss during oven-drying (y = 0.96x + 0.08). By applying this correction, the freeze-drying bottleneck could oven-dry large-scale inventories of total Hg in peatlands with results equivalent to freeze-drying, but only have to freeze-dry a subset
    corecore