25 research outputs found

    An ant genus-group ( Prenolepis ) illuminates the biogeography and drivers of insect diversification in the Indo-Pacific

    Get PDF
    The Malay Archipelago and the tropical South Pacific (hereafter the Indo-Pacific region) are considered biodiversity hotspots, yet a general understanding of the origins and diversification of species-rich groups in the region remains elusive. We aimed to test hypotheses for the evolutionary processes driving insect species diversity in the Indo-Pacific using a higher-level and comprehensive phylogenetic hypothesis for an ant clade consisting of seven genera. We estimated divergence times and reconstructed the biogeographical history of ant species in the Prenolepis genus-group (Formicidae: Formicinae: Lasiini). We used a fossil-calibrated phylogeny to infer ancestral geographical ranges utilizing a biogeographic model that includes founder-event speciation. Ancestral state reconstructions of the ants\u27 ecological preferences, and diversification rates were estimated for selected Indo-Pacific clades. Overall, we report that faunal interchange between Asia and Australia has occurred since at least 20–25 Ma, and early dispersal to the Fijian Basin happened during the early and mid-Miocene (ca. 10–20 Ma). Differences in diversification rates across Indo-Pacific clades may be related to ecological preference breadth, which in turn may have facilitated geographical range expansions. Ancient dispersal routes suggested by our results agree with the palaeogeography of the region. For this particular group of ants, the rapid orogenesis in New Guinea and possibly subsequent ecological shifts may have promoted their rapid diversification and widespread distribution across the Indo-Pacific

    Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies.

    Get PDF
    The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies

    Conceptual and empirical advances in Neotropical biodiversity research

    Get PDF
    The outstanding biodiversity found in the American tropics (the Neotropics) has attracted the attention of naturalists for centuries. Despite major advances in the generation of biodiversity data, many questions remain to be answered. In this review, we first summarize some of the knowns and unknowns about Neotropical biodiversity, and discuss how human impact may have drastically affected some of the patterns observed today. We then link biodiversity to landscape, and outline major advances in biogeographical research. In particular, we argue that it is crucial to test the effect of landscape and climatic evolution to biotic diversification and distribution in order to achieve a comprehensive understanding of current patterns. In this context, it is also important to consider extant and extinct taxa, as well as to use probabilistic and parametric methods that explicitly include landscape evolution models. We subsequently explore different scales in Neotropical biogeography, focusing on the intersection between biogeography and community ecology, both of which often address similar questions from different angles. The concepts of community assembly, island biogeography, neutral processes, and ecological interactions are then discussed as important components of the complex processes that determine the patterns observed today. Single-taxon and cross-taxonomic studies are complementary and greatly needed, but achieving synthesis remains challenging. Finally, we argue that phylogenetic approaches hold great potential to connect across taxonomic, spatial and temporal scales, despite current difficulties to generate and cross-analyze large volumes of molecular data. We conclude by outlining major prospects and hindrances for further advancing our knowledge on the rich Neotropical biodiversity.</p

    Conceptual and empirical advances in Neotropical biodiversity research.

    Get PDF
    The unparalleled biodiversity found in the American tropics (the Neotropics) has attracted the attention of naturalists for centuries. Despite major advances in recent years in our understanding of the origin and diversification of many Neotropical taxa and biotic regions, many questions remain to be answered. Additional biological and geological data are still needed, as well as methodological advances that are capable of bridging these research fields. In this review, aimed primarily at advanced students and early-career scientists, we introduce the concept of "trans-disciplinary biogeography," which refers to the integration of data from multiple areas of research in biology (e.g., community ecology, phylogeography, systematics, historical biogeography) and Earth and the physical sciences (e.g., geology, climatology, palaeontology), as a means to reconstruct the giant puzzle of Neotropical biodiversity and evolution in space and time. We caution against extrapolating results derived from the study of one or a few taxa to convey general scenarios of Neotropical evolution and landscape formation. We urge more coordination and integration of data and ideas among disciplines, transcending their traditional boundaries, as a basis for advancing tomorrow's ground-breaking research. Our review highlights the great opportunities for studying the Neotropical biota to understand the evolution of life

    Madagascar’s extraordinary biodiversity: Threats and opportunities

    Get PDF
    Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as themost prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar

    Madagascar’s extraordinary biodiversity: Evolution, distribution, and use

    Get PDF
    Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique living laboratory for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity

    How genomics can help biodiversity conservation

    Get PDF
    The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.info:eu-repo/semantics/publishedVersio
    corecore