1,202 research outputs found

    Ketamine induction of p53-dependent apoptosis and oxidative stress in zebrafish (Danio rerio) embryos

    Get PDF
    Ketamine is a widely used pharmaceutical that has been detected in water sources worldwide. Zebrafish embryos were used in this study to investigate the oxidative stress and apoptotic signals following a 24h exposure to different ketamine concentrations (0, 50, 70 and 90 mg L-1). Early blastula embryos (∼2 h post fertilisation-hpf) were exposed for 24 h and analysed at 8 and 26 hpf. Reactive oxygen species and apoptotic cells were identified in vivo, at 26 hpf. Enzymatic activities (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), lactate dehydrogenase (LDH) and acetylcholinesterase (AChE)), glutathione levels (oxidised (GSSG) and reduced (GSH)), oxidative damage (lipid peroxidation (LPO) and protein carbonyls (CO)) as well as oxidative stress (gclc, gstp1, sod1 and cat), apoptosis (casp3a, casp6, casp8, casp9, aifm1 and tp53) and cell proliferation (pcna) related-genes were evaluated at 8 and 26 hpf. Caspase (3 and 9) activity was also determined at both time-points by colorimetric methods. Superoxide dismutase (SOD), catalase (CAT), glutathione levels (GSSG), caspase-9 and reactive oxygen species (ROS) were shown to be affected by ketamine exposure while in vivo analysis showed no difference in ROS. A significant up-regulation of superoxide dismutase (sod1) and catalase (cat) genes expression was also perceived. Ketamine-induced apoptosis was observed in vivo and confirmed by the apoptotic-related genes up-regulation. The overall results suggest that ketamine induced oxidative stress and apoptosis through the involvement of p53-dependent pathways in zebrafish embryos which could be important for the evaluation of the overall risk of ketamine in aquatic environments.This work was supported by European Investment Funds by FEDER/COMPETE/POCI– Operational Competitiveness and Internationalization Programme, under Project POCI-01-0145-FEDER-006958 and FCOMP-01-0124-FEDER-028683 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the projects PTDC/CVT-WEL/4672/2012 and UID/AGR/04033/2013 and by individual funding provided by postdoctoral fellowship SFRH/BPD/103006/2014 issued by FCT

    Histomorphometric evaluation of bone healing in rabbit fibular osteotomy model without fixation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animal models of fracture consolidation are fundamental for the understanding of the biological process of bone repair in humans, but histological studies are rare and provide only qualitative results. The objective of this article is to present the histomorphometric study of the bone healing process using an experimental model of osteotomy in rabbit fibula without interference of synthesis material.</p> <p>Methods</p> <p>Fifteen rabbits were submitted to fibular osteotomy without any fixation device. Groups of five animals were submitted to pharmacological euthanasia during a period of one (group A), two (group B) and four weeks (group C) after osteotomy. Histomorphometric evaluation was performed in the histological sections.</p> <p>Results</p> <p>During week one there was intense cellularity (67/field), a large amount of woven bone (75.7%) and a small amount of lamellar bone (7.65%). At two weeks there was a decrease in woven bone (41.59%) and an increase in lamellar bone (15.16%). At four weeks there was a decrease of cellularity (19.17/field) and lamellar bone (55.56%) exceeded the quantity of woven bone (31.68%).</p> <p>Conclusion</p> <p>Histomorphometric (quantitative) evaluation of the present study was shown to be compatible with bone healing achieved in qualitative experimental models that have been commended in the literature.</p

    Day-ahead allocation of operation reserve in composite power systems with large-scale centralized wind farms

    Get PDF
    This paper focuses on the day-ahead allocation of operation reserve considering wind power prediction error and network transmission constraints in a composite power system. A two-level model that solves the allocation problem is presented. The upper model allocates operation reserve among subsystems from the economic point of view. In the upper model, transmission constraints of tielines are formulated to represent limited reserve support from the neighboring system due to wind power fluctuation. The lower model evaluates the system on the reserve schedule from the reliability point of view. In the lower model, the reliability evaluation of composite power system is performed by using Monte Carlo simulation in a multi-area system. Wind power prediction errors and tieline constraints are incorporated. The reserve requirements in the upper model are iteratively adjusted by the resulting reliability indices from the lower model. Thus, the reserve allocation is gradually optimized until the system achieves the balance between reliability and economy. A modified two-area reliability test system (RTS) is analyzed to demonstrate the validity of the method.This work was supported by National Natural Science Foundation of China (No. 51277141) and National High Technology Research and Development Program of China (863 Program) (No. 2011AA05A103)

    Hypoglycemic and anti-lipemic effects of the aqueous extract from Cissus sicyoides

    Get PDF
    BACKGROUND: Cissus sicyoides (Vitaceae) is a medicinal plant popularly known in Brazil as "cipó-pucá, anil-trepador, cortina, and insulina". The plant is used in several diseases, including rheumatism, epilepsy, stroke and also in the treatment of diabetes. In the present work, we studied the hypoglycemic and anti-lipemic effects of the aqueous extract prepared from fresh leaves of the plant (AECS), in the model of alloxan-induced diabetes in rats. In addition, hepatic enzyme levels were also determined. RESULTS: Results showed that the daily treatment of diabetic rats with AECS for 7 days (100 and 200 mg/kg, p.o.) significantly decreased blood glucose levels in 25 and 22% respectively, as compared to the same groups before AECS treatment. No significant changes were seen in control diabetic rats before (48 h after alloxan administration) and after distilled water treatment. While no changes were seen in total cholesterol levels, a significant decrease was observed in plasma triglyceride levels, in the alloxan-induced diabetic rats after AECS treatment with both doses, as compared to the same groups before treatment. Significant decreases in blood glucose (25%) and triglyceride levels (48%) were also observed in the alloxan-induced diabetic rats after 4 days treatment with AECS (200 mg/kg, p.o.). Aspartate (AST) and alanine (ALT) aminotransferases levels, in diabetic controls and AECS-treated rats, were in the range of reference values presented by normal rats. CONCLUSIONS: The results justify the popular use of C. sicyoides, pointing out to the potential benefit of the plant aqueous extract (AECS) in alternative medicine, in the treatment of type 2 diabetes mellitus

    Chemoselective Installation of Amine Bonds on Proteins through Aza-Michael Ligation.

    Get PDF
    Chemical modification of proteins is essential for a variety of important diagnostic and therapeutic applications. Many strategies developed to date lack chemo- and regioselectivity as well as result in non-native linkages that may suffer from instability in vivo and adversely affect the protein's structure and function. We describe here the reaction of N-nucleophiles with the amino acid dehydroalanine (Dha) in a protein context. When Dha is chemically installed in proteins, the addition of a wide-range N-nucleophiles enables the rapid formation of amine linkages (secondary and tertiary) in a chemoselective manner under mild, biocompatible conditions. These new linkages are stable at a wide range of pH values (pH 2.8 to 12.8), under reducing conditions (biological thiols such as glutathione) and in human plasma. This method is demonstrated for three proteins and is shown to be fully compatible with disulfide bridges, as evidenced by the selective modification of recombinant albumin that displays 17 structurally relevant disulfides. The practicability and utility of our approach is further demonstrated by the construction of a chemically modified C2A domain of Synaptotagmin-I protein that retains its ability to preferentially bind to apoptotic cells at a level comparable to the native protein. Importantly, the method was useful for building a homogeneous antibody-drug conjugate with a precise drug-to-antibody ratio of 2. The kinase inhibitor crizotinib was directly conjugated to Dha through its piperidine motif, and its antibody-mediated intracellular delivery results in 10-fold improvement of its cancer cell-killing efficacy. The simplicity and exquisite site-selectivity of the aza-Michael ligation described herein allows the construction of stable secondary and tertiary amine-linked protein conjugates without affecting the structure and function of biologically relevant proteins

    α-Galactosylceramide and peptide-based nano-vaccine synergistically induced a strong tumor suppressive effect in melanoma

    Get PDF
    α-Galactosylceramide (GalCer) is a glycolipid widely known as an activator of Natural killer T (NKT) cells, constituting a promising adjuvant against cancer, including melanoma. However, limited clinical outcomes have been obtained so far. This study evaluated the synergy between GalCer and major histocompatibility complex (MHC) class I and MHC class II melanoma-associated peptide antigens and the Toll-Like Receptor (TLR) ligands CpG and monophosphoryl lipid A (MPLA), which we intended to maximize following their co-delivery by a nanoparticle (NP). This is expected to improve GalCer capture by dendritic cells (DCs) and subsequent presentation to NKT cells, and simultaneously induce an anti-tumor specific T-cell mediated immunity. The combination of GalCer with melanoma peptides and TLR ligands successfully restrained tumor growth. The tumor volume in these animals was 5-fold lower than the ones presented by mice immunized with NPs not containing GalCer. However, tumor growth was controlled at similar levels by GalCer entrapped or in its soluble form, when mixed with antigens and TLR ligands. Those two groups showed an improved infiltration of T lymphocytes into the tumor, but only GalCer-loaded nano-vaccine induced a prominent and enhanced infiltration of NKT and NK cells. In addition, splenocytes of these animals secreted levels of IFN-γ and IL-4 at least 1.5-fold and 2-fold higher, respectively, than those treated with the mixture of antigens and adjuvants in solution. Overall, the combined delivery of the NKT agonist with TLR ligands and melanoma antigens via this multivalent nano-vaccine displayed a synergistic anti-tumor immune-mediated efficacy in B16F10 melanoma mouse model. STATEMENT OF SIGNIFICANCE: Combination of α-galactosylceramide (GalCer), a Natural Killer T (NKT) cell agonist, with melanoma-associated antigens presented by MHC class I (Melan-A:26) and MHC class II (gp100:44) molecules, and Toll-like Receptor (TLR) ligands (MPLA and CpG), within nanoparticle matrix induced a prominent anti-tumor immune response able to restrict melanoma growth. An enhanced infiltration of NKT and NK cells into tumor site was only achieved when the combination GalCer, antigens and TLR ligands were co-delivered by nanovaccine

    Leishmania Parasites Drive PD-L1 Expression in Mice and Human Neutrophils With Suppressor Capacity

    Get PDF
    Neutrophils play an important role in the outcome of leishmaniasis, contributing either to exacerbating or controlling the progression of infection, a dual effect whose underlying mechanisms are not clear. We recently reported that CD4+ and CD8+ T cells, and dendritic cells of Leishmania amazonensis-infected mice present high expression of PD-1 and PD-L1, respectively. Given that the PD-1/PD-L1 interaction may promote cellular dysfunction, and that neutrophils could interact with T cells during infection, we investigated here the levels of PD-L1 in neutrophils exposed to Leishmania parasites. We found that both, promastigotes and amastigotes of L. amazonensis induced the expression of PD-L1 in the human and murine neutrophils that internalized these parasites in vitro. PD-L1-expressing neutrophils were also observed in the ear lesions and the draining lymph nodes of L. amazonensis-infected mice, assessed through cell cytometry and intravital microscopy. Moreover, expression of PD-L1 progressively increased in neutrophils from ear lesions as the disease evolved to the chronic phase. Co-culture of infected neutrophils with in vitro activated CD8+ T cells inhibits IFN-γ production by a mechanism dependent on PD-1 and PD-L1. Importantly, we demonstrated that in vitro infection of human neutrophils by L braziliensis induced PD-L1+ expression and also PD-L1+ neutrophils were detected in the lesions of patients with cutaneous leishmaniasis. Taken together, these findings suggest that the Leishmania parasite increases the expression of PD-L1 in neutrophils with suppressor capacity, which could favor the parasite survival through impairing the immune response
    corecore