2,465 research outputs found

    La Teología en la Iglesia entre los croatas 1945-1990

    Get PDF

    El Papel de la buena fe en el derecho contractual inglés

    Get PDF

    Compositional uniformity, domain patterning and the mechanism underlying nano-chessboard arrays

    Full text link
    We propose that systems exhibiting compositional patterning at the nanoscale, so far assumed to be due to some kind of ordered phase segregation, can be understood instead in terms of coherent, single phase ordering of minority motifs, caused by some constrained drive for uniformity. The essential features of this type of arrangements can be reproduced using a superspace construction typical of uniformity-driven orderings, which only requires the knowledge of the modulation vectors observed in the diffraction patterns. The idea is discussed in terms of a simple two dimensional lattice-gas model that simulates a binary system in which the dilution of the minority component is favored. This simple model already exhibits a hierarchy of arrangements similar to the experimentally observed nano-chessboard and nano-diamond patterns, which are described as occupational modulated structures with two independent modulation wave vectors and simple step-like occupation modulation functions.Comment: Preprint. 11 pages, 11 figure

    Langevin dynamics with a tilted periodic potential

    Full text link
    We study a Langevin equation for a particle moving in a periodic potential in the presence of viscosity γ\gamma and subject to a further external field α\alpha. For a suitable choice of the parameters α\alpha and γ\gamma the related deterministic dynamics yields heteroclinic orbits. In such a regime, in absence of stochastic noise both confined and unbounded orbits coexist. We prove that, with the inclusion of an arbitrarly small noise only the confined orbits survive in a sub-exponential time scale.Comment: 38 pages, 6 figure

    Spiral ground state against ferroelectricity in the frustrated magnet BiMnFe2O6

    Full text link
    The spiral magnetic structure and underlying spin lattice of BiMnFe2O6 are investigated by low-temperature neutron powder diffraction and density functional theory band structure calculations. In spite of the random distribution of the Mn3+ and Fe3+ cations, this compound undergoes a transition into an incommensurate antiferromagnetically ordered state below TN ~ 220 K. The magnetic structure is characterized by the propagation vector k=[0,beta,0] with beta ~ 0.14 and the P22_12_11'(0 \beta 0)0s0s magnetic superspace symmetry. It comprises antiferromagnetic helixes propagating along the b-axis. The magnetic moments lie in the ac plane and rotate about pi*(1+beta) ~ 204.8 deg angle between the adjacent magnetic atoms along b. The spiral magnetic structure arises from the peculiar frustrated arrangement of exchange couplings in the ab plane. The antiferromagnetic coupling along the c-axis leads to the cancellation of electric polarization, and results in the lack of ferroelectricity in BiMnFe2O6.Comment: 11 pages, 8 figures, 8 table

    The 2006 Human Liver Proteome Project (HLPP) Workshops

    Get PDF
    In 2006, scientists participating to the Human Liver Proteome Project (HLPP) launched by the Human Proteome Organisation (HUPO) convened on two occasions to present and discuss their progress. A workshop was held over two days in May in Bilbao, Spain, and a brief 3-hour meeting was held in October in conjunction with the 5th HUPO World Congress in Long Beach, California. Highlights included progress on the construction of the human normal liver proteome expression profile and of subcellular proteomes, establishment of a liver ORFeome bank and of a liver antibody bank, identifications of protein-protein interaction maps in the liver, application of a robust strategy for quantitative proteomics and the characterization of fatty liver diseases using mouse models

    Modifications of Gait as Predictors of Natural Osteoarthritis Progression in STR/Ort Mice

    Get PDF
    OBJECTIVE: Osteoarthritis (OA) is a common chronic disease for which disease-modifying therapies are not currently available. Studies to seek new targets for slowing the progress of OA rely on mouse models, but these do not allow for longitudinal monitoring of disease development. This study was undertaken to determine whether gait can be used to measure disease severity in the STR/Ort mouse model of spontaneous OA and whether gait changes are related to OA joint pain. METHODS: Gait was monitored using a treadmill-based video system. Correlations between OA severity and gait at 3 treadmill speeds were assessed in STR/Ort mice. Gait and pain behaviors of STR/Ort mice and control CBA mice were analyzed longitudinally, with monthly assessments. RESULTS: The best speed to identify paw area changes associated with OA severity in STR/Ort mice was found to be 17 cm · seconds(−1). Paw area was modified with age in CBA and STR/Ort mice, but this began earlier in STR/Ort mice and correlated with the onset of OA at 20 weeks of age. In addition, task noncompliance appeared at 20 weeks. Surprisingly, STR/Ort mice did not show any signs of pain with OA development, even when treated with the opioid antagonist naloxone, but did exhibit normal pain behaviors in response to complete Freund's adjuvant–induced arthritis. CONCLUSION: The present results identify an animal model in which OA severity and OA pain can be studied in isolation from one another. The findings suggest that paw area and treadmill noncompliance may be useful tools to longitudinally monitor nonpainful OA development in STR/Ort mice. This will help in providing a noninvasive means of assessing new therapies to slow the progression of OA
    corecore