134 research outputs found

    Development of a Model for the Small-Particle Orbital Debris Population Based on the STS Impact Record

    Get PDF
    In preparation for the release of the Orbital Debris Engineering Model (ORDEM) version 3.1, the NASA Orbital Debris Program Office (ODPO) revisited how orbiting debris populations of characteristic sizes smaller than 1 cm were modeled. The primary contributor to the population of sub-centimeter debris particles is the surface deterioration or erosion of spacecraft materials exposed to the outer-space environment. Because small particulates are not directly trackable by remote sensing, the primary means of detection is via historical counts of small impact features on flown radiator and window surfaces of the U.S. Space Transportation System (STS, also known as the Space Shuttle) from 1995-2011. Historic NASA studies of high-velocity impact tests have related impact-feature size to particle mass and velocity for certain STS surfaces, so that a corresponding particle size may be inferred from each small-impact feature observed. Micro-debris populations are then estimated by modeling the path and orientation of an STS mission through a simulated debris environment, and the densities of this simulated environment are rescaled to approximate the number of observed STS impact features. Monte-Carlo methods are further employed to gauge the estimation uncertainty of the rescaled environment. A description of the chosen methodologies for estimating and adjusting the micro-debris population model, and the results, are presented

    Risk of Increased Fragmentation Events Due to Low Altitude Large Constellation Spacecraft

    Get PDF
    Orbital debris experts and industry leaders are concerned about the added hazard that thousands of additional spacecraft would have on the future orbital debris environment. Large constellations proposals plan to deploy spacecraft at altitudes from 1100 km to 1300 km, where fragmentation debris can take thousands of years or longer to decay naturally, while other proposals include deploying spacecraft at station-keeping altitudes from 300 km to 600 km. Although these lower altitude spacecraft are compliant with the 25-year rule, there is still an increased risk of accidental explosions generating high velocity fragments that could damage international spacecraft assets. The NASA Orbital Debris Program Office (ODPO) has conducted several parametric studies that examine the potential negative environmental impacts of large constellation deployments. This study addresses the lower altitude constellations and the potential risk that they impose on the future environment during mission operations. The projected future environment is generated as the average of 100 LEGEND Monte Carlo (MC) simulation runs while adjusting parameters such as average probability of explosion and operational lifetime per constellation. Results of the effect of accidental explosions of large constellation spacecraft on the environment below 600 km altitude are analyzed

    The Updated GEO Population for ORDEM 3.1

    Get PDF
    The limited availability of data for satellite fragmentations and debris in the geosynchronous orbit (GEO) region creates challenges to building accurate models for the orbital debris environment at such altitudes. Updated methods to properly incorporate and extrapolate measurement data have become a cornerstone of the GEO component in the newest version of the NASA Orbital Debris Engineering Model (ORDEM), ORDEM 3.1. For the GEO region, the Space Surveillance Network (SSN) catalog provides coverage down to a limit of approximately 1 m. A more statistically complete representation of the GEO population for smaller objects, which can pose a high risk to operational spacecraft, is thus dependent on dedicated observations by instruments optimized to observe debris smaller than the SSN cataloging threshold. For ORDEM 3.1, optical data from the Michigan Orbital DEbris Survey Telescope (MODEST) provided the input for building the GEO population down to approximately 30 cm (converting absolute magnitude to size). For smaller sizes, the size distribution of debris in the MODEST dataset was extrapolated down to 10 cm, and orbital parameters were estimated based on the orbits of the larger objects. When compared to previous versions of the model, significant improvements were made to the process of building the GEO population in ORDEM 3.1, both in the assessment of fragmentation debris in the data and assignment of orbital elements within the model. A so-called debris ring filter, based on a range of angles between an orbits angular momentum vector and that of the stable Laplace plane, was applied to the data to reduce biases from non- GEO objects, such as objects in a GEO-transfer orbit. In addition, a new approach was implemented to assign noncircular mean motions and eccentricities to the fragmentation debris observed by MODEST because the short observation window (5 min) in GEO limits orbit resolution to a circular orbit assumption for assigning orbital parameters. For ORDEM 3.1, non-circular orbital elements were assigned using relationships that were identified between mean motion and the angle between the orbit plane and the stable Laplace plane, as well as between mean motion and eccentricity, based on breakup clouds modeled by the NASA Standard Breakup Model. This approach has yielded a high-fidelity GEO model that has been validated with data from more recent MODEST observation campaigns

    Curriculum Clearings as Being-With-Mathematics Experiences: Authentic Learning through a Heideggerian Lens

    Get PDF
    The article focuses on the study conducted by the authors in order to understand the nature of authentic learning experience of math students. Authentic learning experience is characterized by the ability of the student to integrate and use disciplinary concepts with real life experience. The authors note that authentic learning experience of math students is influenced by individual perception towards math and expectation on the practical benefits of math education

    Characterization of the 2012-044c Briz-M Upper Stage Breakup

    Get PDF
    On 6 August, 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the US Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for NASA Orbital Debris Program Office to request radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper will describe the observation campaign to measure the small particle distributions of this cloud, and presents the results of the analysis of the data. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion how this measurement process can be improved for future breakups

    Kinetic Damage from Meteorites

    Get PDF
    Ballistic (kinetic energy) damage from falling meteorites has been recorded in two cases: the 1954 Sylacuga, Alabama meteorite of 4 kilogram mass which indirectly hit Ann Hodges and the 1992 Mbale meteorite fall where a 4 gram-sized meteorite struck a young boy. Neither event was fatal. Structures damaged by meteorites are much more common and include mail boxes (Figure 1) and cars (Figure2). Figure 3 shows that meteorite fragments of order 0.1 kilograms may cause serious human injury/fatality. Halliday et al (1985) estimated a human is struck once per decade by a meteorite (most likely gram-sized) while more than a dozen structures should be impacted annually by meteorite fragments

    Examining Microbial Survival During Infall onto Europa: An Important Limit on the Origin of Potential European Life

    Get PDF
    Previous work shows that transfer of material from Earth to Europa is statistically possible, opening the question of whether terrestrial biota may have transferred to Europa to populate that world. Transfer of viable organisms is a function of parameters such as ejection shock, radiation exposure, and others, applied across four phases in the transfer process: ejection from the parent body, transport through interplanetary space, infall onto the target world, and biological adaptation. If terrestrial biota could survive transport to Europa, then biology on Europa may be either the product of a separate and unrelated origin or they are the descendants of transferred terrestrial organisms. If, however, transfer of viable organisms is impossible, then any biota present on Europa must be the product of a biological origin independent from terrestrial life. We will investigate the survival likelihood of material falling onto Europa

    Characterization of the 2012-044C Briz-M Upper Stage Breakup

    Get PDF
    On 6 August, 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the US Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for NASA Orbital Debris Program Office to use specialized radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper will describe the observation campaign to measure the small particle distributions of this cloud, and presents the results of the analysis of the data. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion how this measurement process can be improved for future breakups

    ORDEM 3.1 Development Status

    Get PDF
    In this presentation we shall review NASA Orbital Debris Engineering Model (ORDEM) scope, intended use, and version history; development of the latest version, v. 3.1; provide a current development status; and discuss current deployment plans. We will also place ORDEM in context with other NASA and US models as well as the ESA MASTER model, ORDEMs closest analogue model

    The NASA Orbital Debris Engineering Model 3.1: Development, Verification, and Validation

    Get PDF
    The NASA Orbital Debris Program Office has developed the Orbital Debris Engineering Model (ORDEM) primarily as a tool for spacecraft designers and other users to understand the long-term risk of collisions with orbital debris. The newest version, ORDEM 3.1, incorporates the latest and highest fidelity datasets available to build and validate representative orbital debris populations encompassing low Earth orbit (LEO) to geosynchronous orbit (GEO) altitudes for the years 2016-2050. ORDEM 3.1 models fluxes for object sizes > 10 m within or transiting LEO and > 10 cm in GEO. The deterministic portion of the populations in ORDEM 3.1 is based on the U.S. Space Surveillance Network (SSN) catalog, which provides coverage down to approximately 10 cm in LEO and 1 m in GEO. Observational datasets from radar, in situ, and optical sources provide a foundation from which the model populations are statistically extrapolated to smaller sizes and orbit regions that are not well-covered by the SSN catalog, yet may pose the greatest threat to operational spacecraft. Objects in LEO ranging from approximately 5 mm to 10 cm are modeled using observational data from ground-based radar, namely the Haystack Ultrawideband Satellite Imaging Radar (HUSIR formerly known as Haystack). The LEO population smaller than approximately 3 mm in size is characterized based on a reanalysis of in situ data from impacts to the windows and radiators of the U.S. Space Transportation System orbiter vehicle, i.e., the Space Shuttle. Data from impacts on the Hubble Space Telescope are also used to validate the sub-millimeter model populations in LEO. Debris in GEO with sizes ranging from 10 cm to 1 m is modeled using optical measurement data from the Michigan Orbital DEbris Survey Telescope (MODEST). Specific, major debris-producing events, including the Fengyun-1C, Iridium 33, and Cosmos 2251 debris clouds, and unique populations, such as sodium-potassium droplets, have been re-examined and are modeled and added to the ORDEM environment separately. The debris environment greater than 1 mm is forecast using NASAs LEO-to- GEO ENvironment Debris model (LEGEND). Future explosions of intact objects and collisions involving objects greater than 10 cm are assessed statistically, and the NASA Standard Satellite Breakup Model is used to generate fragments from these events. Fragments smaller than 10 cm are further differentiated based on material density categories, i.e., high-, medium-, and low-density, to better characterize the potential debris risk posed to spacecraft. The future projection of the sub-millimeter environment is computed using a special small-particle degradation model where small particles are created from intact spacecraft and rocket bodies. This work discusses the development, features, and capabilities of the ORDEM 3.1 model; the ne new data analyses used to build the model populations; and sample verification and validation results
    • …
    corecore