9 research outputs found

    Coronary Artery Disease Alters Ventricular Repolarization Dynamics in Type 2 Diabetes

    Get PDF
    Ventricular repolarization dynamics (VRD) is an important predictor of outcome in diabetes. We examined the potential impact of coronary artery disease (CAD) on VRD in type 2 diabetic patients. We recorded 5-min high-resolution resting electrocardiograms (ECG) in 38 diabetic patients undergoing elective coronary angiography, and in 38 age- and gender- matched apparently healthy subjects (Controls). Using leads I and II, time-domain indices of VRD were calculated. Coronary angiography was regarded as positive if a 350% stenosis was found. Angiography was positive in 21 diabetic patients (55%). Patients with CAD had a significantly higher degree of VRD than Controls (SDNN(QT): 15.81+/-7.22 ms vs. 8.94+/-6.04 ms; P <0.001, rMSSD(QT): 21.02k7.07 ms vs. 11.18k7.45 ms; P <0.001). VRD in diabetic patients with negative angiograms did not differ from VRD in Controls (SDNN(QT): 8.94+/-6.04 ms vs. 7.44+/-5.72 ms; P=0.67, rMSSD(QT): 11.18+/-7.45 ms vs. 10.22+/-5.35 ms; P=O. 82). CAD increases VRD in patients with type 2 diabetes. Therefore, changes in ventricular repolarization in diabetic patients may be due to silent CAD rather than to diabetes per se

    Structure effects induced by high mechanical compaction of STAM-17-OEt MOF powders

    Get PDF
    Financial support by PJ-RIC-FFABR_2017 and the EPSRC grant EPSRC industrial CASE award (grant EP/N50936X/1) are acknowledged. The research programme Nanoporous materials (P1-0021) financially supported by Slovenian Research Agency (ARRS) is acknowledged as well.Metal-organic frameworks (MOFs) are promising materials for many potential applications, spacing from gas storage to catalysis. However, the powder form of which they are generally made is not suitable, mainly because of the low packing density. Powder compaction is therefore necessary, but also challenging because of their typical mechanical fragility. Indeed, generally, they undergo irreversibly damages upon densification processes, for example partially or totally loosing microporosity and catalytic activity. In this work, we deeply study the compaction effects on the flexible Cu(II)-based MOF STAM-17-OEt  (Cu(C10O5H8)1.6 H2O), whose chemical composition is close to that of HKUST-1, obtaining that it is, by contrast, extremely suitable for mechanical compaction processes with pressures up to 200 MPa, which increase its packing density, its catalytic activity, and preserve porosity, flexibility and water stability, characteristics of STAM-17-OEt. The results are supported by many experimental techniques including EPR spectroscopy, PXRD diffraction, CO2 isotherms studies and catalytic tests.Publisher PDFPeer reviewe

    Structure effects induced by high mechanical compaction of STAM-17-OEt MOF powders

    No full text
    Metal-organic frameworks (MOFs) are promising materials for many potential applications, spacing from gas storage to catalysis. However, the powder form of which they are generally made is not suitable, mainly because of the low packing density. Powder compaction is therefore necessary, but also challenging because of their typical mechanical fragility. Indeed, generally, they undergo irreversibly damages upon densification processes, for example partially or totally loosing microporosity and catalytic activity. In this work, we deeply study the compaction effects on the flexible Cu(II)-based MOF STAM-17-OEt  (Cu(C10O5H8)1.6 H2O), whose chemical composition is close to that of HKUST-1, obtaining that it is, by contrast, extremely suitable for mechanical compaction processes with pressures up to 200 MPa, which increase its packing density, its catalytic activity, and preserve porosity, flexibility and water stability, characteristics of STAM-17-OEt. The results are supported by many experimental techniques including EPR spectroscopy, PXRD diffraction, CO2 isotherms studies and catalytic tests
    corecore