73 research outputs found

    Temperature dependence of the energy dissipation in dynamic force microscopy

    Full text link
    The dissipation of energy in dynamic force microscopy is usually described in terms of an adhesion hysteresis mechanism. This mechanism should become less efficient with increasing temperature. To verify this prediction we have measured topography and dissipation data with dynamic force microscopy in the temperature range from 100 K up to 300 K. We used 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) grown on KBr(001), both materials exhibiting a strong dissipation signal at large frequency shifts. At room temperature, the energy dissipated into the sample (or tip) is 1.9 eV/cycle for PTCDA and 2.7 eV/cycle for KBr, respectively, and is in good agreement with an adhesion hysteresis mechanism. The energy dissipation over the PTCDA surface decreases with increasing temperature yielding a negative temperature coefficient. For the KBr substrate, we find the opposite behaviour: an increase of dissipated energy with increasing temperature. While the negative temperature coefficient in case of PTCDA agrees rather well with the adhesion hysteresis model, the positive slope found for KBr points to a hitherto unknown dissipation mechanism

    Role of van der Waals forces in the adsorption and diffusion of organic molecules on an insulating surface

    Get PDF
    The adsorption and diffusion of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules on a nanostructured KBr (001) surface were investigated by combining noncontact atomic force microscopy (NC-AFM) and first-principles calculations. Atomically resolved measurements demonstrate trapping of PTCDA molecules in intentionally created rectangular monolayer-deep substrate pits and a preferential adsorption at kink sites. In order to understand the experimental results, we found that it was essential to include a first-principles treatment of the van der Waals interactions. We show that at some sites on the surface, 85% of the molecular binding is provided by van der Waals interactions, and in general it is always the dominant contribution to the adsorption energy. It also qualitatively changes molecular diffusion on the surface. Based on the specificity of the molecular interaction at kink sites, the species of the imaged ionic sublattice in the NC-AFM measurements could be identified.Peer reviewe

    High on-off conductance switching ratio in optically-driven self-assembled conjugated molecular systems

    Get PDF
    A new azobenzene-thiophene molecular switch is designed, synthesized and used to form self-assembled monolayers (SAM) on gold. An "on/off" conductance ratio up to 7x1E3 (with an average value of 1.5x1E3) is reported. The "on" conductance state is clearly identified to the cis isomer of the azobenzene moiety. The high "on/off" ratio is explained in terms of photo-induced, configuration-related, changes in the electrode-molecule interface energetics (changes in the energy position of the molecular orbitals with respect to the Fermi energy of electrodes) in addition to changes in the tunnel barrier length (length of the molecules). First principles DFT calculations demonstrate a better delocalization of the frontier orbitals, as well as a stronger electronic coupling between the azobenzene moiety and the electrode for the cis configuration over the trans one. Measured photoionization cross-sections for the molecules in the SAM are close to the known values for azobenzene derivatives in solution.Comment: 1 file with main text, figure and suppementary informatio

    P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance

    Full text link
    Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT:PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications

    Azobenzenes as Light-controlled Molecular Electronic Switches in Nanoscale Metal-Molecule-Metal Junctions

    No full text
    Self-assembled monolayers (SAMs) of azo-biphenyl derivatives AZO1 have been ssembled on gold surfaces and electrocally tested under irradiation. Comparable maximal cis/trans ratios of ca. 0.9 have been observed in all cases upon irradiation at λ = 370 nm and λ = 360 nm. The current values measured by STM on the two isomers indicate a largere current for the cis isomer respet to the trans isomer, in agreement with the theory
    corecore