47 research outputs found

    An efficient system to generate monoclonal antibodies against membrane-associated proteins by immunisation with antigen-expressing mammalian cells

    Get PDF
    ABSTRACT: BACKGROUND: The generation of monoclonal antibodies specific for protein antigens usually depends on purified recombinant protein for both immunisation and hybridoma screening. Purification of recombinant protein in sufficient yield and purity is a tedious undertaking and can be demanding especially in the case of membrane proteins. Furthermore, antibodies generated against a purified recombinant protein are frequently incapable of binding to the endogenous protein in its native context. RESULTS: We describe a strategy to generate monoclonal antibodies against membrane or membrane-associated proteins that completely bypasses any need for purified recombinant antigen. This approach utilises stably transfected mammalian cells expressing recombinant antigens on their cell surface for immunisation of mice. The transfected cells are also used for measuring seroconversion, hybridoma selection and antibody characterisation. By presenting the antigen in its native conformation for immunisation and hybridoma selection, this procedure promotes the generation of antibodies capable of binding to the endogenous protein. In the present study, we applied this approach successfully for three predicted GPI-anchored proteins of the malaria parasite Plasmodium falciparum. CONCLUSIONS: The described entirely cell-based technology is a fast and efficient approach for obtaining antibodies reactive with endogenous cell-surface proteins in their native conformatio

    In vitro assessment of the pharmacodynamic properties of DB75, piperaquine, OZ277 and OZ401 in cultures of Plasmodium falciparum

    Get PDF
    Objectives Using synchronized cultures of Plasmodium falciparum, the time- and concentration-dependent growth changes of erythrocytic parasite stages to DB75, piperaquine, OZ277 and OZ401 were investigated in vitro over a concentration range of ∼1-100× the IC50 of piperaquine, OZ277 and OZ401 and ∼10-1000× the IC50 of DB75. Methods The effects of timed in vitro exposure (1, 6, 12 or 24 h) were monitored by the incorporation of [3H]hypoxanthine into the parasite nucleic acids. Results After 1 h of exposure to the highest concentration of the compound followed by removal of the compound, the growth of all stages of P. falciparum was reduced to <34% for DB75 and 15% for piperaquine, OZ277 and OZ401 compared with untreated control parasites. At this time point, no stage-specific effects were observed at any of the concentrations. Strong inhibition (≤10% growth) of all parasite stages was observed when the parasites were exposed to 10× or 100× the IC50 of OZ277 and OZ401 for ≥6 h. At the 6 h incubation time point, DB75 was more active against mature parasite stages, with the IC50s of young ring forms elevated up to 7-fold. This trend was observed up to 12 h, but was only statistically significant at the lowest concentration. Interestingly, the stage-specific effect of DB75 on ring forms was not detectable when washing procedures were omitted. This indicates a cytostatic action of DB75 on P. falciparum ring forms. Conclusions The current study suggests that P. falciparum ring stages are less susceptible to DB75. A milder and often statistically insignificant stage-specific trend was observed for piperaquine, whereas OZ277 and OZ401 were equally active against the erythrocytic parasite stage

    Artemether administered together with haemin damages schistosomes in vitro

    Get PDF
    We conducted experiments in vitro to assess the effect of artemether in combination with haemin on adult Schistosoma japonicum, S. mansoni and S. haematobium. When schistosomes were maintained in a medium containing artemether at concentrations of 20 μg/mL or less for 72 h, no apparent effect on the schistosomes was seen. When the medium contained 50 or 100 μg/mL haemin as well as artemether, the schistosomes showed decreased motor activity 2-24 h after exposure, which was followed by the staining of the whole worm body a reddish-yellow colour, dilatation of the intestine, and extensive vesiculation of the tegument. Some of the schistosomes died 24 h after exposure, and almost all died within 48-72 h. When schistosomes were exposed to the same concentrations of haemin alone, they were stained a light yellow colour but there was no apparent effect on their survival. Our findings suggest that artemether interacts with haemin to exert a toxic effect on the worms, which might be of importance in the further elucidation of the mechanism of action of artemether on schistosome

    In vitro assessment of the pharmacodynamic properties and the partitioning of OZ277/RBx-11160 in cultures of Plasmodium falciparum

    Get PDF
    Objectives: Using synchronous cultures of Plasmodium falciparum malaria, the stage sensitivity of the parasite to OZ277 (RBx-11160), the first fully synthetic antimalarial peroxide that has entered Phase II clinical trials, was investigated in vitro over a concentration range of 1× to 100× the IC50. Secondly, partitioning of OZ277 into P. falciparum-infected red blood cells (RBCs) and uninfected RBCs was studied in vitro by measuring its distribution between RBCs and plasma (R/P). Methods: The effects of timed in vitro exposure (1, 6, 12 or 24 h) to OZ277 were monitored by incorporation of [3H]hypoxanthine into parasite nucleic acids and by light-microscopic analysis of parasite morphology. Partitioning studies were performed with radiolabelled [14C]OZ277. Results: After 1 h of exposure to OZ277 at the highest concentration (100× the IC50) followed by removal of the compound, the hypoxanthine assay showed that growth of mature stages of P. falciparum was reduced to below 20%. Young ring forms were slightly less sensitive (43% growth). Similar stage-specific profiles were found for the antimalarial reference compounds artemether and chloroquine. Strong inhibition (≤6% growth) of all parasite stages was observed when the parasites were exposed to each of the three compounds for 6 h or longer. After removal of the compounds, the parasites did not recover, indicating that the observed growth inhibitions were cytotoxic rather than cytostatic. Pyrimethamine was confirmed to be active exclusively against young schizonts. Light-microscopic analysis also demonstrated the specificity of pyrimethamine against the schizont forms and showed that OZ277, artemether and chloroquine attenuated parasite growth more rapidly than did pyrimethamine. The R/P for OZ277 was 1.5 for uninfected RBCs and up to 270 for infected RBCs. Conclusions: The present study indicates similar stage-specific profiles for OZ277 and for the more well-established antimalarial agents artemether and chloroquine. Secondly, the study describes a significant accumulation of radiolabelled OZ277 in P. falciparum-infected RBC

    Development of an antibody fragment that stabilizes GPCR/G-protein complexes.

    Get PDF
    Single-particle cryo-electron microscopy (cryo-EM) has recently enabled high-resolution structure determination of numerous biological macromolecular complexes. Despite this progress, the application of high-resolution cryo-EM to G protein coupled receptors (GPCRs) in complex with heterotrimeric G proteins remains challenging, owning to both the relative small size and the limited stability of these assemblies. Here we describe the development of antibody fragments that bind and stabilize GPCR-G protein complexes for the application of high-resolution cryo-EM. One antibody in particular, mAb16, stabilizes GPCR/G-protein complexes by recognizing an interface between Gα and Gβγ subunits in the heterotrimer, and confers resistance to GTPγS-triggered dissociation. The unique recognition mode of this antibody makes it possible to transfer its binding and stabilizing effect to other G-protein subtypes through minimal protein engineering. This antibody fragment is thus a broadly applicable tool for structural studies of GPCR/G-protein complexes

    Generation of monoclonal antibodies against native viral proteins using antigen-expressing mammalian cells for mouse immunization

    Get PDF
    Due to their rising incidence and progressive geographical spread, infections with mosquito-borne viruses, such as dengue (DENV), chikungunya and zika virus, have developed into major public health challenges. Since all of these viruses may cause similar symptoms and can occur in concurrent epidemics, tools for their differential diagnosis and epidemiological monitoring are of urgent need.; Here we report the application of a novel strategy to rapidly generate monoclonal antibodies (mAbs) against native viral antigens, exemplified for the DENV nonstructural glycoprotein 1 (NS1). The described system is based on the immunization of mice with transfected mammalian cells expressing the target antigens in multiple displays on their cell surface and thereby presenting them efficiently to the host immune system in their native conformation. By applying this cell-based approach to the DENV NS1 protein of serotypes 1 (D1NS1) and 4 (D4NS1), we were able to rapidly generate panels of DENV NS1 serotype cross-reactive, as well as D1NS1- and D4NS1 serotype-specific mAbs. Our data show that the generated mAbs were capable of recognizing the endogenous NS1 protein in DENV-containing biological samples.; The use of this novel immunization strategy, allows for a fast and efficient generation of hybridoma cell lines, producing mAbs against native viral antigens. Envisaged applications of the mAbs include the development of test platforms enabling a differentiation of the DENV serotypes and high resolution immunotyping for epidemiological studies
    corecore