2,906 research outputs found

    The Shift of the Baryon Acoustic Oscillation Scale: A Simple Physical Picture

    Full text link
    A shift of the baryon acoustic oscillation (BAO) scale to smaller values than predicted by linear theory was observed in simulations. In this paper, we try to provide an intuitive physical understanding of why this shift occurs, explaining in more pedagogical detail earlier perturbation theory calculations. We find that the shift is mainly due to the following physical effect. A measurement of the BAO scale is more sensitive to regions with long wavelength overdensities than underdensities, because (due to non-linear growth and bias) these overdense regions contain larger fluctuations and more tracers and hence contribute more to the total correlation function. In overdense regions the BAO scale shrinks because such regions locally behave as positively curved closed universes, and hence a smaller scale than predicted by linear theory is measured in the total correlation function. Other effects which also contribute to the shift are briefly discussed. We provide approximate analytic expressions for the non-linear shift including a brief discussion of biased tracers and explain why reconstruction should entirely reverse the shift. Our expressions and findings are in agreement with simulation results, and confirm that non-linear shifts should not be problematic for next-generation BAO measurements.Comment: 10 pages, replaced with version accepted by Phys. Rev.

    Bootstrap-Based Inference for Cube Root Asymptotics

    Get PDF
    This paper proposes a valid bootstrap-based distributional approximation for M-estimators exhibiting a Chernoff (1964)-type limiting distribution. For estimators of this kind, the standard nonparametric bootstrap is inconsistent. The method proposed herein is based on the nonparametric bootstrap, but restores consistency by altering the shape of the criterion function defining the estimator whose distribution we seek to approximate. This modification leads to a generic and easy-to-implement resampling method for inference that is conceptually distinct from other available distributional approximations. We illustrate the applicability of our results with four examples in econometrics and machine learning

    Inference in Linear Regression Models with Many Covariates and Heteroskedasticity

    Full text link
    The linear regression model is widely used in empirical work in Economics, Statistics, and many other disciplines. Researchers often include many covariates in their linear model specification in an attempt to control for confounders. We give inference methods that allow for many covariates and heteroskedasticity. Our results are obtained using high-dimensional approximations, where the number of included covariates are allowed to grow as fast as the sample size. We find that all of the usual versions of Eicker-White heteroskedasticity consistent standard error estimators for linear models are inconsistent under this asymptotics. We then propose a new heteroskedasticity consistent standard error formula that is fully automatic and robust to both (conditional)\ heteroskedasticity of unknown form and the inclusion of possibly many covariates. We apply our findings to three settings: parametric linear models with many covariates, linear panel models with many fixed effects, and semiparametric semi-linear models with many technical regressors. Simulation evidence consistent with our theoretical results is also provided. The proposed methods are also illustrated with an empirical application

    On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference

    Full text link
    Nonparametric methods play a central role in modern empirical work. While they provide inference procedures that are more robust to parametric misspecification bias, they may be quite sensitive to tuning parameter choices. We study the effects of bias correction on confidence interval coverage in the context of kernel density and local polynomial regression estimation, and prove that bias correction can be preferred to undersmoothing for minimizing coverage error and increasing robustness to tuning parameter choice. This is achieved using a novel, yet simple, Studentization, which leads to a new way of constructing kernel-based bias-corrected confidence intervals. In addition, for practical cases, we derive coverage error optimal bandwidths and discuss easy-to-implement bandwidth selectors. For interior points, we show that the MSE-optimal bandwidth for the original point estimator (before bias correction) delivers the fastest coverage error decay rate after bias correction when second-order (equivalent) kernels are employed, but is otherwise suboptimal because it is too "large". Finally, for odd-degree local polynomial regression, we show that, as with point estimation, coverage error adapts to boundary points automatically when appropriate Studentization is used; however, the MSE-optimal bandwidth for the original point estimator is suboptimal. All the results are established using valid Edgeworth expansions and illustrated with simulated data. Our findings have important consequences for empirical work as they indicate that bias-corrected confidence intervals, coupled with appropriate standard errors, have smaller coverage error and are less sensitive to tuning parameter choices in practically relevant cases where additional smoothness is available

    Regression Discontinuity Designs Using Covariates

    Full text link
    We study regression discontinuity designs when covariates are included in the estimation. We examine local polynomial estimators that include discrete or continuous covariates in an additive separable way, but without imposing any parametric restrictions on the underlying population regression functions. We recommend a covariate-adjustment approach that retains consistency under intuitive conditions, and characterize the potential for estimation and inference improvements. We also present new covariate-adjusted mean squared error expansions and robust bias-corrected inference procedures, with heteroskedasticity-consistent and cluster-robust standard errors. An empirical illustration and an extensive simulation study is presented. All methods are implemented in \texttt{R} and \texttt{Stata} software packages
    corecore