16 research outputs found
Recent Insights into the Pathogenesis of Acute Porphyria Attacks and Increasing Hepatic PBGD as an Etiological Treatment
Rare diseases, especially monogenic diseases, which usually affect a single target protein, have attracted growing interest in drug research by encouraging pharmaceutical companies to design and develop therapeutic products to be tested in the clinical arena. Acute intermittent porphyria (AIP) is one of these rare diseases. AIP is characterized by haploinsufficiency in the third enzyme of the heme biosynthesis pathway. Identification of the liver as the target organ and a detailed molecular characterization have enabled the development and approval of several therapies to manage this disease, such as glucose infusions, heme replenishment, and, more recently, an siRNA strategy that aims to down-regulate the key limiting enzyme of heme synthesis. Given the involvement of hepatic hemoproteins in essential metabolic functions, important questions regarding energy supply, antioxidant and detoxifying responses, and glucose homeostasis remain to be elucidated. This review reports recent insights into the pathogenesis of acute attacks and provides an update on emerging treatments aimed at increasing the activity of the deficient enzyme in the liver and restoring the physiological regulation of the pathway. While further studies are needed to optimize gene therapy vectors or large-scale production of liver-targeted PBGD proteins, effective protection of PBGD mRNA against the acute attacks has already been successfully confirmed in mice and large animals, and mRNA transfer technology is being tested in several clinical trials for metabolic diseases
Presence of Systemic Inflammatory Response Syndrome Predicts a Poor Clinical Outcome in Dogs with a Primary Hepatitis
<div><p>Primary hepatopathies are a common cause of morbidity and mortality in dogs. The underlying aetiology of most cases of canine hepatitis is unknown. Consequently, treatments are typically palliative and it is difficult to provide accurate prognostic information to owners. In human hepatology there is accumulating data which indicates that the presence of systemic inflammatory response syndrome (SIRS) is a common and debilitating event in patients with liver diseases. For example, the presence of SIRS has been linked to the development of complications such as hepatic encephalopathy (HE) and is associated with a poor clinical outcome in humans with liver diseases. In contrast, the relationship between SIRS and clinical outcome in dogs with a primary hepatitis is unknown. Seventy dogs with histologically confirmed primary hepatitis were enrolled into the study. Additional clinical and clinicopathological information including respiratory rate, heart rate, temperature, white blood cell count, sodium, potassium, sex, presence of ascites, HE score, alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin and red blood cell concentration were available in all cases. The median survival of dogs with a SIRS score of 0 or 1 (SIRS low) was 231 days compared to a median survival of 7 days for dogs with a SIRS score of 2, 3 or 4 (SIRS high) (p<0.001). A Cox proportional hazard model, which included all other co-variables, revealed that a SIRS high score was an independent predictor of a poor clinical outcome. The effect of modulating inflammation on treatment outcomes in dogs with a primary hepatitis is deserving of further study.</p></div
Proyecto Buggy
Construcción de un vehículo monoplaza tipo Buggy.2022-
Informe VTH 2022-2
Este informe se presentan el trabajor realizado durante el semestre que constan de la construcción del vehículo a tracción humana para la competencia realizada en noviembre 27, en la universidad EAFIT2022-
FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted
Background & Aims: Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. Methods: FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Followup RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. Results: An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. Conclusions: Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. Lay summary: Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver