421 research outputs found
Fundamental Oscillation Periods of the Interlayer Exchange Coupling beyond the RKKY Approximation
A general method for obtaining the oscillation periods of the interlayer
exchange coupling is presented. It is shown that it is possible for the
coupling to oscillate with additional periods beyond the ones predicted by the
RKKY theory. The relation between the oscillation periods and the spacer Fermi
surface is clarified, showing that non-RKKY periods do not bear a direct
correspondence with the Fermi surface. The interesting case of a FCC(110)
structure is investigated, unmistakably proving the existence and relevance of
non-RKKY oscillations. The general conditions for the occurrence of non-RKKY
oscillations are also presented.Comment: 34 pages, 10 figures ; to appear in J. Phys.: Condens. Mat
Quantum oscillation of magnetoresistance in tunneling junctions with a nonmagnetic spacer
We make a theoretical study of the quantum oscillations of the tunneling
magnetoresistance (TMR) as a function of the spacer layer thickness. Such
oscillations were recently observed in tunneling junctions with a nonmagnetic
metallic spacer at the barrier-electrode interface. It is shown that momentum
selection due to the insulating barrier and conduction via quantum well states
in the spacer, mediated by diffusive scattering caused by disorder, are
essential features required to explain the observed period of oscillation in
the TMR ratio and its asymptotic value for thick nonmagnetic spacer.Comment: 4 pages, 5 figures, two column, REVTex4 styl
Assessing Uncertainty Associated with Groundwater and Watershed Problems Using Fuzzy Mathematics and Generalized Regression Neural Networks
When trying to represent an environmental process using mathematical models, uncertainty is an integral part of numerical representation. Physically-based parameters are required by such models in order to forecast or make predictions. Typically, when the uncertainty inherent in models is addressed, only aleatory uncertainty (irreducible uncertainty) is considered. This type of uncertainty is amenable to analysis using probability theory. However, uncertainty due to lack of knowledge about the system, or epistemic uncertainty, should also be considered. Fuzzy set theory and fuzzy measure theory are tools that can be used to better assess epistemic, as well as aleatory, uncertainty in the mathematical representation of the environment. In this work, four applications of fuzzy mathematics and generalized regression neural networks (GRNN) are presented. In the first, Dempster-Shafer theory (DST) is used to account for uncertainty that surrounds permeability measurements and is typically lost in data analysis. The theory is used to combine multiple sources of subjective information from two expert hydrologists and is applied to three different data collection techniques: drill-stem, core, and pump-test analysis. In the second, a modification is made to the fuzzy least-squares regression model and is used to account for uncertainty involved in using the Cooper-Jacob method to determine transmissivity and the storage coefficient. A third application, involves the development of a GRNN to allow for the use of fuzzy numbers. A small example using stream geomorphic condition assessments conducted in the state of Vermont is provided. Ultimately, this fuzzy GRNN will be used to better understand the relationship between the geomorphic and habitat conditions of stream reaches and their corresponding biological health. Finally, an application of the GRNN algorithm to explore links between physical stream geomorphic and habitat conditions and biological health of stream reaches is provided. The GRNN proves useful; however, physical and biological data collected concurrently is needed to enhance accuracy
The Nature and Validity of the RKKY limit of exchange coupling in magnetic trilayers
The effects on the exchange coupling in magnetic trilayers due to the
presence of a spin-independent potential well are investigated. It is shown
that within the RKKY theory no bias nor extra periods of oscillation associated
with the depth of the well are found, contrary to what has been claimed in
recent works. The range of validity of the RKKY theory is also discussed.Comment: 10, RevTe
A theoretical investigation of ferromagnetic tunnel junctions with 4-valued conductances
In considering a novel function in ferromagnetic tunnel junctions consisting
of ferromagnet(FM)/barrier/FM junctions, we theoretically investigate multiple
valued (or multi-level) cell property, which is in principle realized by
sensing conductances of four states recorded with magnetization configurations
of two FMs; that is, (up,up), (up,down), (down,up), (down,down). To obtain such
4-valued conductances, we propose FM1/spin-polarized barrier/FM2 junctions,
where the FM1 and FM2 are different ferromagnets, and the barrier has spin
dependence. The proposed idea is applied to the case of the barrier having
localized spins. Assuming that all the localized spins are pinned parallel to
magnetization axes of the FM1 and FM2, 4-valued conductances are explicitly
obtained for the case of many localized spins. Furthermore, objectives for an
ideal spin-polarized barrier are discussed.Comment: 9 pages, 3 figures, accepted for publication in J. Phys.: Condens.
Matte
The role of symmetry on interface states in magnetic tunnel junctions
When an electron tunnels from a metal into the barrier in a magnetic tunnel
junction it has to cross the interface. Deep in the metal the eigenstates for
the electron can be labelled by the point symmetry group of the bulk but around
the interface this symmetry is reduced and one has to use linear combinations
of the bulk states to form the eigenstates labelled by the irreducible
representations of the point symmetry group of the interface. In this way there
can be states localized at the interface which control tunneling. The
conclusions as to which are the dominant tunneling states are different from
that conventionally found.Comment: 14 pages, 5 figures, accepted in PRB, v2: reference 3 complete
Interplay of Chemical, Electronic, and Structural Effects in the Triple-Conducting BaFeO3-Ba(Zr,Y)O3 Solid Solution
Triple-conducting oxides with mobile protons, oxygen vacancies, and holes are key functional materials for protonic ceramic fuel/electrolysis cells. We comprehensively investigate the Ba(Zr,Y,Fe)O3-delta perovskite solid solution series ranging from electrolyte to electrode-type materials depending on iron content. From thermogravimetry and impedance spectroscopy, the proton and oxygen vacancy concentrations as well as electronic and ionic conductivities are determined. X-ray spectroscopy (Fe K-edge XANES, O K-edge Raman scattering, Fe, Zr, Y K-edge EXAFS) elucidates the finer features of the electronic structure and local distortions. A low Fe content of <= 10% strongly decreases the degree of hydration, while comparably high Fe concentrations of >= 70% are required to obtain an electronic conductivity sufficient for an electrode material. The transport of ionic and electronic carriers is interrelated in a complex way and is closely linked to details of the electronic structure (strength of Fe-O hybridization) and geometrical distortions (Fe-O-Fe and Fe-O-(Zr,Y) buckling). As a result, an optimum combination of proton concentration and electronic conductivity is not obtained in the middle of the solid solution series but rather found for Fe-rich materials with 20-30% doping with oversized, redox-inactive cations. A similar behavior is also expected for related solid solutions between a large-band gap electrolyte and small-band gap redox-active perovskites
Hybridizing Constraint Programming and Monte-Carlo Tree Search: Application to the Job Shop problem
International audienceConstraint Programming (CP) solvers classically explore the solution space using tree search-based heuristics. Monte-Carlo Tree-Search (MCTS), a tree-search based method aimed at sequential decision making under uncertainty, simultaneously estimates the reward associated to the sub-trees, and gradually biases the exploration toward the most promising regions. This paper examines the tight combination of MCTS and CP on the job shop problem (JSP). The contribution is twofold. Firstly, a reward function compliant with the CP setting is proposed. Secondly, a biased MCTS node-selection rule based on this reward is proposed, that is suitable in a multiple-restarts context. Its integration within the Gecode constraint solver is shown to compete with JSP-specific CP approaches on difficult JSP instances
Spin waves in ultrathin ferromagnetic overlayers
The influence of a non-magnetic metallic substrate on the spin wave
excitations in ultrathin ferromagnetic overlayers is investigated for different
crystalline orientations. We show that spin wave dumping in these systems occur
due to the tunneling of holes from the substrate into the overlayer, and that
the spin wave energies may be considerably affected by the exchange coupling
mediated by the substrate.Comment: RevTeX 4, 7 pages, 5 figures; submitted to Phys. Rev.
- …