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ABSTRACT 

When trying to represent an environmental process using mathematical models, 

uncertainty is an integral part of numerical representation.  Physically-based parameters 

are required by such models in order to forecast or make predictions.  Typically, when 

the uncertainty inherent in models is addressed, only aleatory uncertainty (irreducible 

uncertainty) is considered. This type of uncertainty is amenable to analysis using 

probability theory.  However, uncertainty due to lack of knowledge about the system, or 

epistemic uncertainty, should also be considered.  Fuzzy set theory and fuzzy measure 

theory are tools that can be used to better assess epistemic, as well as aleatory, 

uncertainty in the mathematical representation of the environment.  

 

In this work, four applications of fuzzy mathematics and generalized regression 

neural networks (GRNN) are presented.  In the first, Dempster-Shafer theory (DST) is 

used to account for uncertainty that surrounds permeability measurements and is typically 

lost in data analysis.  The theory is used to combine multiple sources of subjective 

information from two expert hydrologists and is applied to three different data collection 

techniques: drill-stem, core, and pump-test analysis.  In the second, a modification is 

made to the fuzzy least-squares regression model and is used to account for uncertainty 

involved in using the Cooper-Jacob method to determine transmissivity and the storage 

coefficient.  A third application, involves the development of a GRNN to allow for the 

use of fuzzy numbers.  A small example using stream geomorphic condition assessments 

conducted in the state of Vermont is provided.  Ultimately, this fuzzy GRNN will be used 

to better understand the relationship between the geomorphic and habitat conditions of 

stream reaches and their corresponding biological health.  Finally, an application of the 

GRNN algorithm to explore links between physical stream geomorphic and habitat 

conditions and biological health of stream reaches is provided.  The GRNN proves 

useful; however, physical and biological data collected concurrently is needed to enhance 

accuracy. 
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CHAPTER 1                                                      
INTRODUCTION AND OBJECTIVES 

 

1.1 Introduction 

When trying to represent an environmental process using mathematical models, 

uncertainty is an integral part of numerical representation.  Physically-based parameters 

are required by such models in order to forecast or make predictions.  For example, in 

subsurface hydrology, soil permeability must be specified in equations descriptive of 

groundwater flow.  Most permeability measurements are assumed to represent the area 

immediately surrounding the measurement.  However, due to the subsurface 

heterogeneity, these measurements say very little about porous medium as you move 

further away from the measurement location.  Many deterministic models use the 

observations at hand and ignore the matter of the uncertainty.  

Typically, when the uncertainty inherent in models is addressed, only aleatory 

uncertainty (irreducible uncertainty) is considered. This type of uncertainty is amenable 

to analysis using probability theory.  However, uncertainty due to lack of knowledge 

about the system, or epistemic uncertainty, should also be considered.  The theory of 

fuzzy mathematics is a tool that allows incorporation of epistemic uncertainty into the 

mathematical representation. 

1.1.1 Overall Goal and Specific Objectives 

The overall goal of this dissertation is to apply nontraditional mathematical tools, i.e., 

fuzzy set theory, fuzzy measure theory and a generalized regression neural network, to 
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better assess epistemic (as well as aleatory) uncertainty.  These methods are used in two 

environmental application areas.  

1. Groundwater applications: 

a. Dempster-Shafer theory (DST, Dempster, 1967 and Shafer, 1976) is used 

to account for uncertainty associated with soil permeability measurements. 

b. A modified fuzzy least-squares regression (in place of linear regression) 

and the Cooper-Jacob method (Cooper and Jacob, 1946) are used to 

determine subsurface transmissivity and storage coefficient membership 

functions.   

2. Watershed applications: 

a. A generalized regression neural network (GRNN) is used to explore 

linkages amongst physical geomorphic and habitat condition, and 

biological health. 

b. From the above GRNN work, the algorithm is modified to accommodate 

the use of fuzzy numbers as inputs and outputs since the assessments 

conducted on geomorphic and habitat condition contain subjective 

information. 

1.2 Dissertation Overview 

Chapter 1 continues with a literature review on the use of Dempster-Shafer theory 

(DST), fuzzy least-squares regression (FLSR), and generalized regression neural 

networks (GRNN) in environmental applications.  Chapter 2 applies DST combination 

rules to join field-measured permeability data (quantitative data) with hydrogeologists‟ 
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expert opinions (subjective information) to examine uncertainty.  Three data sets 

consisting of permeability (k) values measured in the Dakota Sandstone within the 

Denver Basin (Belitz and Bredehoeft, 1988) were analyzed.  Each data set has a different 

collection method: well-water pump-test, core analysis, and drill-stem analysis. 

Dempster‟s rule of combination (chosen to combine the two forms of information), which 

has received criticism in the literature (Zadeh, 1986; Yager, 1987), was compared to two 

alternative combination methods. 

Chapter 3 discusses the development of a modified fuzzy least-squares regression 

(MFLSR) method that allows the use of imprecise pumping-test data to obtain fuzzy 

intercept and slope values that are then used in the Cooper-Jacob method.  Fuzzy 

membership functions for the soil transmissivity and storage coefficient are then 

calculated using the extension principle.  The supports of the fuzzy membership functions 

incorporate the transmissivity and storage coefficient values that would be obtained using 

ordinary least-squares regression and the Cooper-Jacob method.  The MFLSR coupled 

with the Cooper-Jacob method allows for the inclusion of inherent uncertainty due to a 

lack of knowledge regarding the heterogeneity of the subsurface.  The methodology is 

tested on a pumping-test data set collected in an intermediate scale groundwater facility. 

In Chapter 4 the focus of the application is on the ability to identify streams with high 

environmental risk, which is essential for a proactive adaptive watershed management 

approach.  In efforts to describe the health and geomorphic condition of streams, 

environmental managers must gather and assess various forms of information - 

quantitative, qualitative and subjective.  These geomorphic and habitat assessments used 

to characterize streams include some uncertainty, and fuzzy numbers can be used to 
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capture this.  In this work, a new ANN is created by embedding the ability to calculate 

fuzzy numbers into the hidden (called pattern) nodes of the GRNN to leverage the 

uncertainty associated with field data collected by experts.  The Vertex Method (Dong 

and Shah, 1987) is used to calculate the crisp functions in the algorithm using fuzzy 

numbers.  This allows uncertainty from expert field assessments to be accounted for in 

the data analysis, typically this is not quantified.  The algorithm is tested and validated on 

habitat and geomorphic assessment data collected by the Vermont Agency of Natural 

Resources (VTANR) River Management Program throughout the state.  

Chapter 5 is an application of the GRNN, developed by Donald Specht (1991), to 

explore linkages between the geomorphic, physical habitat and biological health of 

stream reaches in Vermont.  Since physical processes occurring in a stream form the 

habitat, habitat assessments look at physical ecological parameters that might help 

understand the relationship between fluvial processes and aquatic communities (VTANR, 

2008).  The GRNN is first used to predict habitat conditions for stream reaches 

throughout the state of Vermont using only geomorphic data.  Further analysis added 

biological health data (fish and macroinvertebrate) into the algorithm, first as an input, 

then as the output.   

Chapter 6 presents a summary and discussion of the projects in this dissertation.  

Appendices A and B contain the MATLAB (The MathWorks, 2010) codes for the GRNN 

algorithms used in this work. 
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1.3 Literature Review  

A review of applications of fuzzy mathematics, specifically Dempster-Shafer theory 

(DST) and fuzzy least-squares regression (FLSR), is followed by an introduction to 

artificial neural networks and review of the applications of GRNNs. 

1.3.1 Quantifying uncertainty using fuzzy mathematics 

1.3.1.1 Dempster-Shafer Theory 

Dempster-Shafer theory (DST), also known as evidence theory (Shafer, 1976), is a 

branch of the theory of monotone measures, a generalization of classical measure theory 

(Klir, 2003), and is one of the few areas of mathematics developed to explore uncertainty 

due to a lack of knowledge about the system.  Strengths of the DST framework include 

its well developed theory, ability to handle various types of evidence (consonant, 

consistent, arbitrary, or disjoint), ability to combine evidence from different sources, lack 

of any assumptions about the distribution of the data, and ability to use all available data 

(outliers are not discarded from the analysis).  

Fields of study where DST has been applied include a study that combines fuzzy 

logic with DST to evaluate slope instability (Binaghi et al., 1998).  Agarwal et al. (2004) 

quantify uncertainty of design tools in multidisciplinary systems analysis.  Cayuela et al. 

(2006) apply DST to remote sensing information along with expert opinion to more 

accurately classify land cover.  Kriegler and Held (2005) use DST to model future 

climate change, which they then project to make an estimate of global mean warming.  

Carranza and Hale (2003) use DST to produce data-driven (instead of knowledge-driven) 
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maps of gold potential in the Baguio district of the Philippines.  Luo  and Caselton (1997) 

explore the use of DST to address uncertainty associated with climate change models. 

The characteristic of DST of most interest in this dissertation is its ability to combine 

multiple sources of evidence.  The original method derived to combine data, Dempster‟s 

rule of combination, has been criticized (Zadeh, 1986; Yager, 1987) for how conflicting 

evidence is handled because it provides counterintuitive results when the level of conflict 

among the evidence is high (Zadeh, 1984).  Several papers discuss the different 

combination rules developed to overcome this difficulty (Sentz and Ferson, 2002; 

Smarandache, 2004; and Smets, 2005).  Two other rules are compared to Dempster‟s rule 

in this work: Yager‟s rule and the Hau-Kashyap method, which differ in how they handle 

conflicting evidence.  In the case where there is no or little conflict, Yager‟s rule and the 

Hau-Kashyap method produce very similar, if not identical, results to Dempster‟s rule, 

however the methods are superior when conflict is greater.   

Dempster‟s rule of combination has found numerous applications where conflict is 

low.  It is used to combine evidence from remote sensing information to assist in the 

production of accurate plant functional type maps (Sun et al., 2008).  In Bi et al. (2007), 

Dempster‟s rule of combination is used to explore the impact of combining four machine-

learning methods for text categorization.  In this dissertation, various combination rules 

are used to combine evidence on permeability data from two independent sources 

(Mathon et al., 2010).   
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1.3.1.2 Fuzzy least-squares regression 

Regression is a statistical tool that is widely used to examine the relationship between 

dependent and independent variables.  Ordinary regression is capable of analyzing and 

producing models only for crisp data.  In reality, data can have a fuzziness to it that when 

ignored, weakens the model used for prediction.  Fuzzy set theory has been used to 

develop fuzzy regression, which can better address the uncertainties associated with the 

regression model of fuzzy data.  Fuzzy regression was originally introduced by Tanaka et 

al. (1982) and since then several other fuzzy regression methods have been developed 

(Chang and Ayyub, 2001).  The regression method that will be discussed in this 

dissertation is fuzzy least-squares regression (FLSR) developed by Savic and Pedrycz 

(1991).  Fuzzy least-squares regression has proven to be effective when few data points 

are available, as traditional statistics need a large number of data points to be valid 

(Bardossy et al., 1990; Ozelkan and Duckstein, 2000).  This lends itself nicely to 

hydrologic applications where data collection is often expensive, and thus sparse. 

Applications of FLSR in hydrology include Bardossy et al. (1990) where FLSR was 

used in a case study that looked at the imprecise relationship between electrical resistivity 

and hydraulic permeability of soil.  Groundwater availability was assessed by Uddameri 

and Honnunger (2007).  Uddameri (2004) used FLSR to explore the relationship between 

scale and longitudinal dispersivity.  Si and Bodhinayake (2005) used FLSR to determine 

soil hydraulic properties (e.g., hydraulic conductivity) using tension infiltrometer 

measurements.  Ozelkan and Duckstein (2001) estimated parameters for a rainfall-runoff 

model using FLSR.   
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The mathematics of the FLSR method is explained in detail in Chapter 3 of this 

dissertation, however the general methodology is outlined here.  FLSR can be used with 

crisp dependent, X, and independent, Y, data or with crisp X and fuzzy triangular Y data.  

The method proposed by Savic and Pedryz (1991) combines two steps.  First, least-

squares regression is carried out using the crisp X and crisp or center value of the fuzzy Y 

data.  This provides the regression model with the center values for the regression 

coefficients (i.e., slope and intercept in the bivariate linear case).  The second step uses 

optimization to obtain the halfwidth (or fuzziness) of the coefficients.  The resulting 

coefficients take the form of symmetrical triangular functions. 

One key problem for FLSR (as well as other fuzzy regression models) has been the 

inability to approach the ordinary regression model when the data are crisp and there is 

no fuzziness associated with the system (Chang and Ayyub, 2001).  A hybrid FLSR was 

introduced by Chang (2001), however that methodology produced negative halfwidths, 

which was confusing, as halfwidths are defined by positive values.  One part of this 

dissertation developed an alternative modified FLSR that reduced to the ordinary 

regression model in the crisp case (Mathon et al., 2008).   

1.3.2 Artificial neural networks 

Artificial neural networks (ANNs) are parallel, nonparametric statistical methods that 

can be used in pattern classification, pattern completion, function approximation, 

prediction, optimization, and system control applications among others (Wasserman, 

1993).  In general, a supervised ANN takes an input vector and maps it to either a vector 
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or a scalar output.  The mapping relationship is defined by a set of weights that are 

determined during a training phase.   

ANNs are trained via one of two methods: supervised or unsupervised.  In supervised 

learning, the network is presented with a training data set that consists of input values and 

their corresponding output or target value(s).  During training, the algorithm produces an 

output from the input vector, which is then compared to the target output and the weights 

of the algorithm are adjusted to minimize the distance between the ANN output and the 

target values.  This process is done iteratively until a user-defined amount of error is 

achieved.  Once the weights produce a satisfactory mapping between training inputs and 

outputs, they are fixed, and used to predict output from additional input vectors.  In 

unsupervised learning algorithms, the network does not have a target output vector to 

compare predictions values.  Instead, training is accomplished using only input vectors 

and the weights are adjusted to achieve similarities in the data (e.g. classifying like things 

together; clustering). 

The most commonly used supervised algorithm is the feed-forward back-propagation 

network (FFBP).  In fact, more than 95% of ANNs currently reported in environmental 

engineering literature have used either a FFBP or a radial basis function (RBF) neural 

network (Govindaraju and Ramachandra, 2000).  In this work, however, an alternative 

ANN, a GRNN (Specht, 1991), is used to explore watershed management issues.  In 

addition, a new GRNN algorithm is created to allow for the use of fuzzy numbers as 

inputs and outputs in order to capture expert opinion typically not captured in field 

geomorphic and habitat assessments. 
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GRNNs have been used in various modeling applications, and fuzzy mathematics has 

been used to preprocess data or as a comparison to GRNN results.  However, the project 

presented in Chapter 4 appears to be the first use of fuzzy numbers in a modified GRNN 

algorithm. 

1.3.2.1 Generalized regression neural network 

The GRNN is a one-pass learning algorithm with a parallel structure capable of 

estimating continuous variables (Specht, 1991) and designed to be used on data where the 

functional form is unknown (i.e., a linear assumption cannot be validated and the order of 

the “optimal” polynomial is unknown).  Due to its one-pass design, it does not require 

iterative training like the more widely used FFBP.  The advantages of the GRNN are 1) 

the computational speed; 2) the ability to update easily as new information becomes 

available; and 3) the accuracy of prediction from sparse data sets. 

The GRNN has extensive applications in the water resources and hydrological fields. 

Aksoy and Dahamsheh (2009) explore using a GRNN for forecasting monthly 

precipitation.  Several studies have had success predicting leaf wetness (Chtioui et al., 

1999a; Chtioui et al., 1999b) and evapotranspiration (Kim and Kim, 2008; Kisi, 2008a). 

Cigizoglu and Alp (2004) found the GRNN to be successful in predicting rainfall runoff 

and, unlike the radial basis function and multiple linear regression, did not produce 

negative flow estimations.  There have been numerous applications of GRNNs in 

forecasting stream flow.  Firat (2008) explored its use in daily stream flow forecasting, 

while Ng et al. (2009) use a GRNN to estimate missing observations in extreme daily 

streamflow records.  Besaw et al. (2009a) use a recurrent feed-back loop on a GRNN to 
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predict flow in ungauged streams.  Several studies found the GRNN to outperform the 

FFBP when forecasting intermittent stream flow (Cigizoglu, 2005a) and monthly stream 

flow (Cigizoglu, 2005b; Kisi, 2008b).  Turan and Yurdusev (2009) tested the GRNN on 

the prediction of stream flow from measured upstream flow records.  The GRNN was 

also used to predict water quality based on rainfall, surface discharge and nutrient 

concentration (Kim and Kim, 2007) and to estimate daily mean sea level heights (Sertel 

et al., 2008). 

The GRNN has also been used to help manage water supply.  Asefa et al. (2007) 

predict groundwater levels from one to four weeks into the future for the purposes of 

water demand planning.  Chlorine residuals in a water distribution system were predicted 

to ensure that the water is safe for human consumption (Bowden et al., 2006), and 

monthly water consumption was forecasted based on several socio-economic and climatic 

factors (Firat et al., 2009). 

River sediment transport has also been modeled with GRNNs (Cigizoglu and Alp, 

2006; Cobaner et al., 2009; Kisi et al., 2008).  Wang et al. (2009) used data collected in a 

weir during storm events for one year (the variables considered were turbidity, water 

discharge, and suspended sediment concentrations) in a GRNN to model event-based 

suspended sediment concentration following storm events. 

Predicting environmental contamination is another area where GRNNs have been 

applied.  Kanevski et al. (1999) use a GRNN for spatial prediction of surface soil 

contamination by radionuclides released during the Chernobyl accident in 1986.  In a 

“what if” scenario of biological contamination of water systems, Kim et al. (2008) use E. 

coli transport patterns and a GRNN to locate the pathogenic release location.  Ligang et 
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al. (2008) modeled the relationship between coal-fired boilers and NOx emissions into 

the environment.  Li et al. (2008) predicted nitrogen concentrations in disturbed and 

undisturbed streams and Durdu (2009) used a GRNN to spatially predict polluted surface 

water.  

Agricultural applications of GRNNs include predicting nitrate release from a 

controlled release fertilizer (Du et al., 2008), which found the thickness of the polymer 

coating on the fertilizer was the most important factor controlling nitrate release.  Sun et 

al. (2008) found a GRNN preferable over a FFBP to model air-quality near livestock 

production facilities. 

Finally, Ustaoglu et al. (2008) found GRNNs compared quite well to the conventional 

method of multiple linear regression when forecasting daily mean, maximum, and 

minimum temperature time series as related to agriculture, water resources and tourism. 

1.3.2.2 Fuzzy generalized regression neural network  

The fuzzy GRNN, developed in Chapter 4, is a modified GRNN that can 

accommodate fuzzy numbers.  A formal definition of a fuzzy number will be given in 

Chapter 4, but a conceptual definition follows:  Given a real number x, a fuzzy number 

consists of the real numbers close to or around x.  From fuzzy set theory, the extension 

principle (Zadeh, 1975) is used to fuzzify the crisp mathematical functions that are used 

in the GRNN.  Here, the Vertex Method (Dong and Shah, 1987) is used to calculate the 

functions as an approximation to the extension principle.  This function is embedded into 

the GRNN algorithm to carry out the appropriate calculations using fuzzy numbers.   
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Following a literature search of a GRNN and fuzzy numbers, several studies have 

used fuzzy clustering as a method to preprocess a large amount of training data so as to 

simplify the GRNN (Lee et al., 2004, Lee et al., 2006, Husain et al., 2004, Goulermas, et 

al., 2007, Zhao et al., 2007). 

In the field of image processing, identifying head pose is helpful in applications such 

as face recognition.  Bailly and Milgram (2009) use fuzzy functional criterion as a filter 

to select relevant features from images and couple it with a GRNN to assist in mapping 

between features and corresponding head pose.  Li and Fenli (2008) propose a digital 

image watermarking method based on fuzzy c-mean clustering and a GRNN. 

Traffic models have been constructed that use the nonlinear mapping capabilities of 

fuzzy systems and then pass the data to a GRNN (Gharavol et al., 2007).  Kumara et al. 

(2003) used fuzzy logic to cluster noisy traffic data and then a GRNN was used to predict 

the hazardousness of a traffic intersection. 

The combination of fuzzy mathematics and GRNNs has also been found in other 

engineering fields as well as control systems studies.  Ravanbod (2005) uses a GRNN to 

predict the dimensions of pipeline corrosions.  Fuzzy decision-based neural networks are 

then used for the detection and classification of the corrosions.  Singh et al. (2007) 

compare an adaptive neuro fuzzy inference system (ANFIS) to several ANN algorithms, 

including a GRNN, on the ability to predict thermal conductivity using various physico-

mechanical properties such as porosity and density.  Seng et al. (1998) propose an 

adaptive neuro-fuzzy control system where they use a radial basis function neural 

network as a neuro-fuzzy controller and a GRNN as a predictor. 
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In stream flow prediction, Firat (2008) compared an ANFIS to several ANN methods 

(including a GRNN).  Turan and Yurdusev (2009) compare GRNN, FFBP, and fuzzy 

logic methodologies independently on the ability to predict streamflow from measured 

upstream flow records.  Various ANN models (including a GRNN) were compared to a 

neuro-fuzzy model on estimation abilities of suspended sediment in rivers (Kisi et al., 

2008).  In weather forecasting, Tham et al. (2002) uses fuzzy c-means clustering on 

satellite images to help deduce cloud cluster velocities and then use a GRNN to predict 

cloud velocities over the area of interest. 

The literature search, however, was unable to find a GRNN algorithm that 

incorporated fuzzy numbers.  To our knowledge, this is the first development and 

application of such an algorithm.   
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CHAPTER 2                                                              
DEMPSTER-SHAFER THEORY APPLIED TO 

UNCERTAINTY SURROUNDING PERMEABILITY 

 

2.1 Abstract  

Typically, if uncertainty in subsurface parameters is addressed, it is done so using 

probability theory.  Probability theory is capable of only handling one of the two types of 

uncertainty (aleatory), hence epistemic uncertainty is neglected.  Dempster-Shafer 

evidence theory (DST) is an approach that allows analysis of both epistemic and aleatory 

uncertainty.  In this paper DST combination rules are used to combine measured field 

data on permeability, along with the expert opinions of hydrogeologists (subjective 

information) to examine uncertainty.  Dempster‟s rule of combination is chosen as the 

combination rule of choice primarily due to the theoretical development that exists and 

the simplicity of the data.  Since Dempster‟s rule does have some criticisms, two other 

combination rules (Yager‟s rule and the Hau-Kashyap method) were examined which 

attempt to correct the problems that can be encountered using Dempster‟s rule.  With the 

particular data sets used here, there was not a clear superior combination rule.  

Dempster‟s rule appears to suffice when the conflict amongst the evidence is low. 

2.2 Introduction  

While uncertainty is an integral part of the mathematical representation of the 

environment, behavior forecasting requires the use of mathematical models that depend 

upon the specification of physically based parameters descriptive of the environment.  In 
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subsurface hydrology, for example, the permeability must be specified in equations 

descriptive of groundwater flow.  Typically, when the uncertainty surrounding such 

parameters is addressed, only aleatory uncertainty (irreducible uncertainty) is considered.  

However, there is another type of uncertainty, epistemic (lack of knowledge about the 

system), which should also be considered when using mathematical models to represent 

the environment.  Currently, probability theory, usually within the framework of spatial 

interpolation (kriging), is used in an effort to generate a random field representation of a 

parameter (e.g. permeability).  An effort to accommodate subjective information (e.g. 

expert opinion) into these analyses has been limited.  For example, Ross et al. (2008) has 

developed a fuzzy Kalman filtering approach to incorporate expert knowledge into 

hydraulic conductivity field approximations. 

Analysis of both aleatory and epistemic uncertainty surrounding permeability 

measurements (since classical probability is not sufficient to handle epistemic 

uncertainty, Sentz and Ferson, 2002) requires other avenues for assessing the uncertainty 

to be considered.  Before making the decision on how to combine the evidence at hand, 

one must assess the evidence to determine what type it is: consonant evidence, consistent 

evidence, arbitrary evidence, or disjoint evidence (Sentz and Ferson, 2002).  Consonant 

evidence can be described as a nested structure of subsets, so the smallest set is included 

in the next larger set, which is included in the next larger set, continuing until the largest 

set is reached.  As an example, the following permeability (md) intervals from different 

sources A= [0.6, 0.8], B= [0.5, 0.9], C= [0.2, 1.2] form consonant evidence.  With 

consistent evidence there is at least one element that is shared by all subsets as is the case 

in the following example: A= [0.2, 1.2], B= [0.1, 0.8], C= [0.6, 1.0].  Here the interval 
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[0.6, 0.8] is common to all sources.  For arbitrary evidence there is no one element 

common to all subsets, however some subsets may share elements.  As an example, in 

A= [0.2, 0.7], B= [0.5, 0.9], C= [1.1, 1.4], while the permeability interval [0.5, 0.7] is 

shared by sources A and B, source C has no permeability value common to sources A or 

B.  This is the type of evidence encountered in this paper.  Finally, disjoint evidence 

describes the situation where any two distinct subsets in the collection of sets have no 

element in common. 

Once the evidence was defined, the use of evidence theory (Shafer, 1976) or 

Dempster-Shafer theory (DST), a branch of the theory of monotone measures (a 

generalization of classical measure theory) (Klir, 2003), was chosen to explore the 

uncertainty surrounding permeability.  The main focus of this paper will be on the 

application of DST to combine subjective information (expert defined uncertainty 

bounds) with objective permeability data sets measured in the Dakota Sandstone.  The 

Dempster-Shafer theory framework was selected due to its well developed theory, ability 

to combine evidence from many different sources, ability to handle the type of evidence 

in this study (arbitrary), numerous applications in the sciences (Agarwal et al., 2004; 

Binaghi et al., 1998; Cayuela et al., 2006; Kriegler and Held, 2005), lack of any 

assumptions about the distribution of the data, and ability to use all available data to 

analyze permeability uncertainty (outliers are kept in the analysis). 

The following sections will provide a review of Dempster-Shafer theory and 

introduce the three combination methods used in this paper, describe the data sets 

acquired from three different methods to measure permeability, discuss the results 

obtained from combining expert opinions on the uncertainty surrounding each 



 18 

measurement technique to obtain a more comprehensive representation of the uncertainty 

surrounding the measured data, and finally, compare the results of using modified 

versions of the Dempster‟s rule of combination.  

2.3 Theory  

2.3.1 Dempster-Shafer Theory (or Evidence Theory) 

The Dempster-Shafer theory (DST) used today was originally introduced by Arthur 

Dempster (1967) then later expanded upon by Shafer (1976).  The theory is based on 

belief measures, (Bel) and plausibility measures, (Pl).  A common interpretation of belief 

and plausibility measures is as bounds of the unknown probability of the (permeability) 

set of interest.  These two measures are equal in the case of pure probabilistic information 

(Klir, 2003).  To further explain these measures, let X be a universal set (frame of 

discernment) e.g., all the possible permeability values in the data set, and P(X) denote the 

set of all subsets of X; or all possible intervals of permeability.  The degree of belief, 

Bel(A), is defined for all A in P(X) and it quantifies the total amount of „justified specific‟ 

support given to the claim that the unknown permeability value is in A. The term 

„justified‟ means that B supports A, thus B is contained in A, and the term „specific‟ 

means that B does not support any permeability outside of A.  Similarly, the degree of 

plausibility, Pl(A), is defined for all A in P(X) and it quantifies the maximum amount of 

„potential specific‟ support that could be given to the claim that the unknown 

permeability value is in A.  The term „potential‟ means that B might come to support A 

without supporting any permeability values outside of A if a further piece of evidence is 

taken into consideration, thus the intersection of A and B is nonempty. 
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Belief and plausibility measures can be characterized by the basic mass (probability) 

assignment function



m :P(X) [0,1]       where m()  0 and m(A) 1
AP(X )

 ,  
(2.1) 

using the following relations: 

 

(2.2) 

 

Mass assignments, m(A), characterize the degree of evidence that the unknown 

permeability value of interest belongs exactly to the set A and not to any of its subsets.  

For example, suppose there is evidence that permeability k belongs to the set containing 

values between 20 and 50 md.  Say that the degree of membership of k to this set is 0.8 

(m([20,50]) = 0.80).  The evidence that is associated with this set says nothing about k 

belonging to a smaller subset of the interval [20, 50], i.e., the degree of membership of k 

to the set [30, 40] is not known.  For every set A contained in P(X), such that m(A) is 

greater than zero, is a focal element.    

The original method derived to combine multiple sources of evidence, Dempster‟s 

rule of combination, has been criticized (Zadeh, 1986; Yager, 1987) for how it handles 

conflict among the evidence and, therefore, provides counterintuitive results when the 

level of conflict among the evidence is high (Zadeh, 1984).  Several papers discuss the 

different combination rules that have developed over the years in response to this 

criticism (Sentz and Ferson, 2002; Smarandache, 2004; and Smets, 2005).  Table 2.1 

provides a summary of some of the major points brought forward in these papers.  It 

should be noted that in the case where there is no or little conflict, Yager‟s rule, Inagaki‟s 



Bel(A)  m(B)
B |BA

   

Pl(A)  m(B)
B |A I B

 . 
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rule, Zhang‟s rule and the Hau-Kashyap method produce very similar, if not identical, 

results as Dempster‟s rule.  Since the evidence in this research is independent, not highly 

conflicting, and the sources of information are assumed to be very reliable, Dempster‟s 

rule of combination, along with two other similar combination rules, Yager‟s rule and the 

Hau-Kashyap method, have been chosen to analyze the data. The theory of these 

combination rules is discussed in the following subsections.  Sentz and Ferson (2002) 

provide nice examples on the use of Dempster‟s rule of combination and Yager‟s rule of 

combination.  For an example on the use of the Hau-Kashyap method, the reader is 

referred to the original paper (Hau and Kashyap, 1990). 

2.3.3.1 Dempster’s Rule of Combination 

There exist numerous ways to combine evidence under Dempster-Shafer theory.  The 

first technique derived, and the most widely used, is Dempster‟s rule of combination, 

which is used to combine evidence obtained from two or more independent sources.     

 

(2.3) 

 

Here, J is simply the resulting joint focal element formed from the nonempty 

intersections of the expert focal elements.  The symbol m1,2(J) is referred to as a joint 

basic mass assignment and represents the degree to which the combined evidence 

supports the premise that the unknown permeability value belongs exactly to the set J.  

The variable T represents the mass associated with conflict in the combined evidence.  In 

other words, the denominator acts as a normalization factor since the mass assignments of  



 m1,2(J) 

m1(B)m2(C)
BC J



1T
        for all J   ,  where

T  m1(B)m2(C)
BC

    
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Table 2.1:  Comparison of various well-known combination rules. 

Combination rule Highlights Weaknesses 

Dempster’s rule of combination 

(Dempster, 1967) 

 

Most widely used rule; Easy to 

implement 

Counter-intuitive results can 

occur when the conflict is high 

Yager’s rule 

(Yager, 1987) 

Based on Dempster‟s rule; 

Removes normalization term; 

Assigns conflict to mass of 

universe in order to get more 

intuitive results when conflict is 

high 

Total ignorance can grow 

rapidly implying a lack of 

knowledge even when there is 

knowledge about the case at 

hand 

Hau and Kashyap method 

(Hau and Kashyap, 1990) 

Based on Dempster‟s rule; 

Conflict assigned to union of 

conflicting sets 

Creates “new” focal elements 

for each set of conflicting 

evidence, this can become a 

computational burden 

Inagaki’s unified combination 

rule 

(Inagaki, 1991) 

Encompasses both Dempster‟s 

rule and Yager‟s rule; 

Incorporates a restriction that 

makes the rule only applicable to 

situations where nothing is known 

about the reliability of the sources 

Normalization factor must be 

determined by the user, no well 

justified procedure has been 

developed to determine this 

value 

Zhang’s center combination 

rule 

(Zhang, 1994) 

Allows for two frames of 

discernment; Considers the 

degree of intersection of sets 

Degree of intersection can be 

defined in many ways, hence, 

so can the combination rule 

Dubois & Prade’s disjunctive 

consensus rule 

(Dubois and Prade, 1986, 1992) 

Calculates mass assignments by 

taking the union of sets; No 

conflict is encountered and no 

information from the sources is 

rejected 

Results can be very imprecise 

Discount & Combine method  

(Shafer, 1976) 

For use when evidence is highly 

conflicting; Can apply a 

discounting rate to belief 

functions; Uses an averaging 

function to combine information 

Analyst would need to be 

qualified to determine how 

reliable the sources of 

information are 

Mixing or averaging 

(Ferson and Kreinovich, 2002) 

Uses an averaging function to 

combine information; Mass 

assignments are weighted  

In cases of extreme conflict, 

analyst must consider 

appropriateness of an averaged 

result that was not originally 

suggested as a viable outcome 

by the sources 

Smets’ TBM rule 

(Smets and Kennes, 1994) 

Unknown quantity is not 

restricted to be in the frame of 

discernment. 

When high conflict exists, the 

mass of the empty set is large, 

loss of information 

Dezert-Smarandache classic 

rule 

(Smarandache and Dezert, 2004) 

Does not consider conflict 

(defined on free Dedekind‟s 

lattice) 

If there exists a Bel=0, the 

result of the combination rule is 

automatically 0; Newer theory, 

has not been widely used 

Dezert-Smarandache hybrid 

rule 

(Smarandache and Dezert, 2004) 

Extension of Dubois & Prade‟s 

rule; Considers conflict in that the 

user forces elements to be empty 

based on model constraints 

Difficult to compute; Newer 

theory has not been widely used 
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the focal elements must sum to one.  In this approach it is assumed that the unknown 

value is within the universal set.  This is different from the approach used by Smets and 

Kennes (1994) (i.e., Transferable Belief Model-TBM) where one considers the possibility 

that the unknown value is not in the universal set.  Typically, admitting a nonzero basic 

mass assignment for the empty set does this.  In the case of combination, it is reflected by 

the lack of a normalization factor, whereas the normalization factor in Equation (4) 

ensures that the total mass is unity and m1,2() = 0.  

2.3.3.2 Yager’s Rule 

Yager (1987) proposes an alternative combination rule that has become known in the 

literature as Yager‟s rule: 

 

(2.4) 

 

The main differences between Yager‟s rule and Dempster‟s rule are the removal of the 

normalization term from the definition of the joint mass assignment for J and the 

assignment of the conflict to the mass of the universe X.  Yager‟s thought is that since 

conflict represents the portion of the universe about which nothing is known, it makes 

more sense to distribute it among all the elements instead of only those focal elements 

about which there is information (Yager, 1987). 

2.3.3.3 Hau-Kashyap (H-K) Method 

Yager‟s rule does provide more intuitive joint mass assignments and belief values 

than Dempster‟s rule when applied to conflicting evidence (Yager, 1987).  As the conflict 



m1,2(J)  m1(B)m2(C)
BC J

          for all  J  

m1,2(X)  m1(X)m2(X) m1(B)m2(C)
BC

 . 
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increases, however, the plausibility value of each focal element increases.  This in turn 

yields a large Belief-Plausibility range, which can artificially imply a lack of knowledge 

in focal elements where, in fact, something is known about them (Hau and Kashyap, 

1990).  An alternative approach to Yager‟s rule is proposed by Hau and Kashyap (1990) 

where the mass associated with conflict is assigned to the union of the sets whose 

intersection is empty, instead of to the entire set of the universe, 

 

(2.5) 

 

Here, the term )(2,1 CBm   represents the conflict associated with the particular sets B 

and C.  Hau and Kashyap (1990) argue that instead of “eliminating” or “erasing” the 

conflict as is done using Dempster‟s or Yager‟s rule, they seek compromise among the 

conflicted and choose to resolve the conflicts until after more information becomes 

available. 

2.4 Data Sets 

The data sets that are analyzed in this paper are permeability (k) values measured in 

the Dakota Sandstone within the Denver Basin (Belitz and Bredehoeft, 1988).  There are 

three data sets that are considered independent of each other and each set was determined 

via a different technique; water-well pumping test, core analysis, and drill-stem analysis.  

Though a previous statistical study of this data (Ricciardi, 2002) found cause to remove 

several outliers in each data set, this analysis included all data points; no outliers were 

removed from any of the sets.  All values have units of millidarcies (md). 



m1,2(J)  m1(B)m2(C)
BC J

     

m1,2(BC)  m1(B)m2(C)   if BC .  
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Water-well pump-test data were compiled from state water reports in the regions of 

South Dakota, southwestern Kansas, and southeastern Colorado.  The sandstone here is a 

source of water and the measurements are taken at relatively shallow depths, less than 

3000 feet.  There are 74 points in this set.  In the second set, there are 161 core 

permeability data values that were compiled from state petroleum reports and other 

literature pertaining to regions of northeastern Colorado, southeastern Wyoming, and the 

Nebraska panhandle.  Here the sandstone is primarily used as a source of oil, so the 

measurements are taken at depths from approximately 3,200 feet to 8,400 feet.  The final 

data set consists of drill-stem data that were interpreted by Belitz and Bredehoeft (1988) 

using data from the USGS Petroleum Library in Denver.  The data were obtained from 

the regions of northeastern Colorado, southeastern Wyoming, and the Nebraska 

panhandle.  This was the largest data set at 453 data points.   

The methodology described in this paper is applicable for vertically averaged 

sections.  Each of the three data sets analyzed here provided only the depth measurements 

along with corresponding permeability values, therefore, spatial attributes could not be 

considered in these data sets.  In order to determine whether there is a depth dependency 

for the permeability values, plots of depth versus permeability on a log scale were created 

(Figure 2.1 (A)-(C)) and correlation coefficients were calculated.  The correlation 

coefficients for the water-well pump-test, core, and drill-stem data are 0.004, -0.42, and   

-0.15, respectively.  The small values for the water-well pump-test data and the drill-stem 

data suggest no linear relationship between depth and permeability in these data sets.  

The core data, however, does exhibit a negative linear trend.  A trend such as this could 

increase the range between belief and plausibility, inflating the representation of  



                   

 

Figure 2.1: Depth versus permeability plots for (A), pump-test, (B), core, and (C), drill-stem data. 
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uncertainty found in the measurements.  One possible approach to correcting for this 

would be to detrend the data by subtracting the least-squares fit.  Investigation of the 

most appropriate way to handle data trends using the methodology presented here is a 

topic for further exploration and is not considered in this paper. 

2.5 Results 

2.5.1 Random Intervals to Probability Boxes 

The field-measured permeabilities needed to be converted into structures that could 

be used in the Dempster-Shafer theory framework.  Random sets are noted as being 

mathematically isomorphic to Dempster-Shafer bodies of evidence (Joslyn and Booker, 

2004).  A random set can be thought of as a random variable that has sets as its values 

rather than points.  A finite random set, P, can be defined as (Joslyn and Ferson, 2004) 



P {(A j,m(A j )) :m(A j )  0} (2.6) 

where A j X and 1 ≤ j ≤ N.  A finite random interval, denoted Q, follows as a finite 

random set on X  for which the focal elements can be denoted as intervals Ij such 

that F(Q)={Ij}, 1 ≤ j ≤ N.  The finite random interval is a random left-closed interval of 

the reals, [a,b).  In Joslyn and Booker (2004) it is noted that random intervals are 

important to engineering reliability studies due to their ability to incorporate randomness 

and imprecision or nonspecificity in one mathematical structure.   

Though the domain that is considered here is the entire real line, the data can be 

represented as finite random intervals.  These are in turn examples of Dempster-Shafer 

structures (Joslyn and Booker, 2004), which can prove to be difficult to represent, 

manipulate, and interpret.  Typically, therefore, these structures are approximated by 
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simpler mathematical structures; one example is probability boxes (p-box) from which 

one can obtain an equivalence class of random intervals that are consistent with the p-box 

(Joslyn and Ferson, 2004).  In the case of a piecewise constant p-box, one can construct a 

random interval in a canonical way as it is done in this paper.  From the p-box, one can 

discretize it into rectangles, and then the width of a specific rectangle defines a focal 

element. Their corresponding basic mass assignments are the step sizes on the ordinate or 

the height of a rectangle (Ferson et al., 2002).   

Since the data are in the form of finite random intervals that have a finite number of 

focals, their representation is not computationally restrictive; hence all the focal elements 

can be used.  Therefore, the p-box is less of an approximation but more of an exact 

representation of a Dempster-Shafer structure.  In fact, the p-boxes here are equivalent to 

the cumulative belief and plausibility distributions created using the intervals in each data 

set as the focal elements. 

In order to construct the p-boxes used in this paper, two experts in the field of 

hydrogeology and familiar with the Denver Basin were asked to provide a range of 

uncertainty for each of the three methods.  Neither expert had knowledge of the others 

responses.  The values are given in Table 2.2.  The uncertainty values were then used to 

create two p-boxes for each data set, one for each expert (Figs. 2.2-2.4).  The resulting  

Table 2.2: Expert assigned uncertainty to the three different methods for measuring 

hydraulic conductivity. 

  Water-well Pump-test Core Analysis Drill Stem Analysis 

Expert 1 +/- 1 order of magnitude +/- 2 orders of magnitude 

+/- 0.75 orders of 

magnitude 

Expert 2 

+/- 0.5 orders of 

magnitude +/- 1 order of magnitude +/- 0.5 orders of magnitude 

 



 28 

 

Figure 2.2: Probability box constructed from water-well pump-test data and a 

measurement uncertainty of +/-1 order of magnitude assigned by Expert 1 and +/-

0.5 orders of magnitude assigned by Expert 2. 

 

Figure 2.3: Probability box constructed from core data with a measurement 

uncertainty of +/-2 orders of magnitude assigned by Expert 1 and +/-1 order of 

magnitude assigned by Expert 2. 
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focal elements are consistent with the definition of arbitrary evidence.  The lognormal 

cumulative distribution, the distribution typically used to analyze permeability values of 

the respective data set is also plotted to observe how well it is contained in the p-box.  It 

should be noted here that the resulting p-boxes in Figures 2.2, 2.3, and 2.4 only display 

part of the plot in order to show detail. 

2.5.2 Combination Rules 

Once all the focal elements and corresponding mass assignments were determined, 

the calculations necessary to combine the information were performed.  Analysis using 

Dempster‟s rule yielded conflict values for the pump-test, core, and drill-stem data of 

T=6.57 x 10
-2

, 3.09 x 10
-4

, and 4.00 x 10
-1

, respectively.  Even though the conflict values  

 

 

Figure 2.4:  Probability box constructed from drill-stem data with a measurement 

uncertainty of +/-0.75 orders of magnitude assigned by Expert 1 and +/- 0.5 orders 

of magnitude assigned by Expert 2. 
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for the pump-test and core data are low, the other combination methods were explored to 

see if there was a marked difference in this type of application.  In order to compare the 

results of the three combination rules within the different measurement techniques, plots 

of cumulative belief and plausibility were examined.  Ultimately, a decrease in space 

between the lower (belief) and upper (plausibility) bounds upon combination of the 

information would suggest a decrease in the uncertainty for permeability. 

2.5.2.1 Pump-test Data 

The results of the application of Dempster‟s rule of combination to the pump-test data 

can be seen in Figure 2.5.  This combination yielded 662 joint focal elements.  Upon 

comparison to Figure 2.2, the distance between the bounds (or uncertainty) for the 

permeability is obviously decreased.  This is due to the overall decrease in the size of the 

permeability intervals that form the focal elements of the random interval representing 

evidence on permeability upon combination of information from the two experts. 

Next, the results of combination via Yager‟s rule, yields 662 joint focal elements plus 

the set of the universe, X, to which is assigned an additional mass equal to the conflict 

between the experts, T = 6.57 x 10
-2

.  The uncertainty range is similar to that obtained 

using Dempster‟s rule (Fig. 2.5), however, due to the addition of the mass 

assignmentassociated with the universal set, plausibility values are inflated resulting in a 

wider gap between the cumulative belief and plausibility plots, i.e., greater uncertainty at 

higher permeability values. 

Finally, the Hau-Kashyap (H-K) method produces a total of 750 joint focal elements 

(this includes the joint focals that are created by taking the union of the sets that conflict, 
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Figure 2.5:  Plot of cumulative belief and plausibility for water-well pump-test data.  

These values are calculated using the joint focal elements obtained through 

Dempster’s rule of combination, Yager’s rule of combination, and the Hau-Kashyap 

method. 

 

i.e., the intersection is empty).  The H-K method, like Dempster‟s and Yager‟s rule, 

appears to reduce the uncertainty upon combination (Fig. 2.5).  However, unlike the 

combination from Dempster‟s or Yager‟s rule, it considers permeability values greater 

than 46,802 md.  Also, unlike Yager‟s rule, the H-K method does not appear to inflate the 

plausibility values, as convergence to one is achieved by both the cumulative belief and 

plausibility.  In all cumulative belief and plausibility plots for water-well pump-test data, 

the lognormal curve fits within the bounds of the “box” created by the uncertainty. 

2.5.2.2 Core Data 

The second data set to be analyzed, core data, produced 2,115 joint focal elements 

when combined using Dempster‟s rule.  Yager‟s rule produces 2,115 joint focal elements 
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plus the universal set, which is assigned a mass of 3.09 x 10
-4

.  The H-K method produces 

2,123 joint focal elements.  The resulting cumulative belief and plausibility plots for 

these combination methods appear identical to each other except for the inclusion of the 

larger permeability values (up to 12,990 md ) when the H-K method is used (Fig. 2.6).  In 

this case, due to the extremely low conflict among the evidence, there does not appear to 

be any significant differences between the combination methods.  Compared to the 

experts‟ probability boxes (Fig. 2.3), the bounds decrease upon combination (more 

closely resembling the belief of Expert 2).  This is a result of how the joint focals are 

created and analyzed.  Again the lognormal curve fit‟s within the box for all cases for the 

core data. 

 

 

Figure 2.6:  Plot of cumulative belief and plausibility for core data.  These values are 

calculated using the joint focal elements obtained through Dempster’s rule of 

combination, Yager’s rule of combination, and the Hau-Kashyap method. 
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2.5.2.3 Drill-stem Data 

The final data set to be analyzed was the drill-stem data.  Recall that this data set had 

the most conflict of the three data sets, T=4.00 x 10
-1

.  Dempster‟s rule applied to the 

evidence provided by the experts resulted in 55,473 joint focal elements.  Note that the 

lognormal curve clearly fits into the experts‟ uncertainty opinion (Fig. 2.4).  However, in 

looking at the results of Dempster‟s rule of combination (Fig. 2.7), the lognormal curve 

violates the bounds that are established with this method, suggesting either that the 

lognormal distribution may not be the best distribution in this case or that Dempster‟s 

rule may not be the best combination rule to choose with this level of conflict. 

 

 

Figure 2.7: Plot of cumulative belief and plausibility for drill-stem data.  These 

values are calculated using the joint focal elements obtained through Dempster’s 

rule of combination, Yager’s rule of combination and the Hau-Kashyap method. 
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Yager‟s rule also yields 55,473 joint focal elements plus the universal set, which as 

before, is assigned a mass equal to the conflict present amongst the data, 4.00 x 10
-1

.  

Since this data set has a relatively high conflict, it becomes more apparent how Yager‟s 

rule can inflate the plausibility (Fig. 2.7) when compared to the other two data sets (Figs. 

2.5 and 2.6). 

The H-K method produces 102,877 joint focal elements.  Examining the results of the 

H-K method (Fig. 2.7) the cumulative belief and plausibility plots provide more 

uncertainty than Dempster‟s rule, yet less than Yager‟s rule.  In neither Yager‟s rule nor 

the H-K method does the lognormal curve violate the bounds.   

2.6 Conclusions 

In this paper the use of Dempster-Shafer theory is examined as an alternative way to 

assess the uncertainty surrounding permeability measurements.  The benefits of DST 

include not having to choose a distribution that may or may not be a best fit for the data 

and all available data can be used.  Here it is shown that field measured permeability data 

can be joined with expert subjective data and then the different sources of evidence can 

be combined.  Being able to incorporate multiple sources of evidence would, 

theoretically, provide a better representation of the uncertainty surrounding permeability.   

The second matter considered here is the comparison of combination processes, i.e., 

Dempster‟s rule of combination, and its two modified versions, Yager‟s rule and the Hau-

Kashyap method.  Yager‟s rule appears to err on the side of caution by applying the 

conflict to the mass of the universe.  This results in inflated plausibility values which, in 

particular for cases of higher conflict, results in wide uncertainty ranges (Figs. 2.5 and 
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2.7).  Proceeding with too much caution can actually lead to a lack of knowledge across 

the entire universe.  It can overshadow the areas where much is known, resulting in the 

loss of important information.  Based on the study here, it appears that if there is little 

conflict amongst the data (as in the pump-test and core data) and the data sources are 

reliable, Dempster‟s rule is sufficient.  If the level of conflict is questionably high (the 

drill-stem data case), then it may be safer to choose an alternative combination method 

such as that proposed by Hau-Kashyap. 
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CHAPTER 3                                                   
TRANSMISSIVITY AND STORAGE COEFFICIENT 

ESTIMATION BY COUPLING THE COOPER-JACOB 

METHOD AND MODIFIED FUZZY LEAST-SQUARES 

REGRESSION 

3.1 Abstract 

Traditionally the Cooper-Jacob equation is used to determine the transmissivity and 

the storage coefficient for an aquifer using pump test results.  This model, however, is a 

simplified version of the actual subsurface and does not allow for analysis of the 

uncertainty that comes from a lack of knowledge about the heterogeneity of the 

environment under investigation.  In this paper, a modified fuzzy least-squares regression 

(MFLSR) method is developed that uses imprecise pump test data to obtain fuzzy 

intercept and slope values, which are then used in the Cooper-Jacob method.  Fuzzy 

membership functions for the transmissivity and the storage coefficient are then 

calculated using the extension principle.  The supports of the fuzzy membership functions 

incorporate the transmissivity and storage coefficient values that would be obtained using 

ordinary least-squares regression and the Cooper-Jacob method.  The MFLSR coupled 

with the Cooper-Jacob method allows the analyst to ascertain the uncertainty that is 

inherent in the estimated parameters obtained using the simplified Cooper-Jacob method 

and data that are uncertain due to lack of knowledge regarding the heterogeneity of the 

aquifer. 
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3.2 Introduction 

For decades, water well pump tests have been used to predict the characteristics of the 

subsurface.  While, in the conduct of a pumping test, the water-level measurements and 

their location are relatively crisp with small measurement error, the nature of the porous 

medium with which one identifies these measurements is uncertain.  Due to heterogeneity 

there will be variability in the material properties in the neighborhood of the observation 

well.  Adding more observation wells would provide a more detailed picture of the 

subsurface, however this can be costly and impractical.  Hence, in the absence of 

additional observation wells, the question is `to what degree do the changes in the water 

levels in the observation wells measured during a pumping test reflect the heterogeneous 

nature of the properties in the neighborhood of the well?‟  

Cooper and Jacob (1946) proposed the „straight-line‟ method, built on the theory 

introduced by Theis (1940), for obtaining the transmissivity and the storage coefficient 

through a simplified analysis of pump test results.  The measured water level values 

represent the solution to an equation that includes unknown parameters that reflect the 

heterogeneities in the volume of the geologic formation that is identified with the 

pumping test; that is, the region that is impacted by the pumping test in the specified test 

period.  Denote this solution, or observation, as hobs.  The Theis (1940) solution, hTheis, on 

the other hand generates a water level time profile at a specific point in response to a 

specified pumping rate that assumes a homogeneous aquifer.  If the „straight-line‟ method 

is used to determine transmissivity and storage coefficient values, the parameters 

extracted are not those of the heterogeneous aquifer, but a surrogate homogeneous 

formation.  Using crisp water-level measurements, the „straight-line‟ method will provide 
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crisp values of the transmissivity and the storage coefficient.  The parameter 

identification process is silent on the matter of the uncertainty with which these 

parameters represent the heterogeneity in the media in the neighborhood of the 

observation wells.  

If the values of transmissivity and the storage coefficient identified via the „straight-

line‟ method are substituted into the physically correct, but unknown, equation for the 

aquifer (the equation that generated hobs) a new water level value, would be generated.  

The difference between the values hobs and hTheis could be considered as the model error; 

that is the error committed when using the Cooper-Jacob equation rather than the 

physically correct equation to represent the actual heterogeneous aquifer.  This error will 

be denoted by . 

Uncertainty due to a lack of knowledge, such as  noted above (rather than 

randomness), is called epistemic uncertainty.  Unlike aleatory uncertainty that is 

associated with irreducible uncertainty and amenable to analysis using probability theory, 

epistemic uncertainty is not easily analyzed using probability theory and is more 

appropriately analyzed using other mathematical tools.  Fuzzy sets constitute such a tool.  

In this paper it is shown how to incorporate epistemic uncertainty in the „straight-line‟ 

method of pump test analysis to examine the impact of model uncertainty on 

transmissivity and the storage coefficient.   

Traditionally, the „straight-line‟ method employs ordinary linear regression in an 

attempt to fit a slope and intercept to water levels measured over time at specified well 

locations or over a series of wells at a specified time.  Ordinary linear regression can be 

used to analyze aleatory uncertainty due to observation errors.  However, such errors are 
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generally small relative to model errors and do not reflect the inherent uncertainty in the 

estimated coefficients attributable to heterogeneity.  

Fuzzy linear regression, introduced by Tanaka et al. (1982), is an approach that will 

allow for the accommodation of epistemic uncertainty attributable to lack of knowledge.  

Recent application of fuzzy regression in hydrology can be seen in the work of Bardossy 

et al. (1990), Ozelkan and Duckstein (2001), Uddameri (2004), Si and Bodhinayake 

(2005), and Uddameri and Honnungar (2007).  Many fuzzy linear regression methods 

exist and Chang and Ayyub (2001) provide a nice review of some of these.   

Due to the limitations, as summarized by Ozelkan and Duckstein (2001), of the fuzzy 

regression (FR) method originally proposed by Tanaka et al. (1982), and due to the ease 

of implementation of the fuzzy least-squares regression (FLSR) method as proposed by 

Savic and Pedrycz (1991) the latter was chosen for use in this analysis.  With a slight 

modification to the technique, the proposed modified fuzzy least-squares regression 

(MFLSR) method improved the results, which were found to be similar to those obtained 

using the hybrid fuzzy-least squares regression outlined by Chang (2001).   

In the following sections, the theory of FLSR will be introduced and the reasons 

behind the modification will be discussed.  The hybrid method will also be discussed 

briefly.  The paper will conclude with the results and a discussion of the analysis that was 

conducted by using the MFLSR method in conjunction with the Cooper-Jacob method to 

determine transmissivity and the storage coefficient of an aquifer. 
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3.3 Fuzzy least-squares regression 

A typical bivariate regression model could be represented by: 

XAAY
~

1

~

0

~

  (3.1) 

where 0

~

A and 1

~

A are the fuzzy intercept and fuzzy slope coefficients, respectively, and 

are assumed to have symmetrical triangular membership functions (Figs. 3.1 and 3.2).  

Data identified with X (the independent variable) is crisp and the output 
~

Y  (or dependent 

variable) is either crisp or a fuzzy number.  The fuzzy coefficients can be represented for 

the case of a symmetrical triangular basis function using a center point mj and a spread 

(or halfwidth) cj , i.e. ),(
~

jjj cmA  .  The fuzzy coefficients can be determined by  

 

Figure 3.1: Fuzzy intercept coefficient (A0 term) membership function for 10% and 

50% (epistemic) uncertainty cases. 
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Figure 3.2: Fuzzy slope coefficient (A1 term) membership function for 10% and 

50% (epistemic) uncertainty cases. 

 

solution of the optimization problem defined by the following objective function and 

constraints derived by Tanaka et al. (1982): 

||c        Minimize
n

1i

j

m

0j

ijx


 
(3.2) 

which, for the bivariate case, simplifies to  





n

1i

10  ||cnc        Minimize ix
 

(3.3) 

subject to the following constraints: 



mjxij  (1b) cj | xij |   yi (1b)ei     for i 1 to n,
j0

1


j0

1

  
(3.4) 
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

mjxij  (1b) cj | xij |   yi  (1b)ei     for i 1 to n,
j 0

1


j 0

1

  

c0  0; c1 0

 
(3.5) 

where n is the number of data points, xij is the independent variable (in this case xi0 = 1 

and xi1 is the input variable from the given data set), yi is the center of the fuzzy 

dependent (output) variable, ei is the spread of the fuzzy dependent variable, and    



b [0,1] is a degree of compatibility which can be viewed as a measure of fit between the 

regression model and the actual data.  This measure, b, imposes a threshold on the model 

to express the fact that the fuzzy model result should contain all the (crisp) observed data 

yi to a certain degree, and it is of the form (Savic and Pedrycz, 1991): 

n 1,2,...,for       )(  ibyiY  
(3.6) 

where μY is the membership function for Y.  The choice of b influences the widths cj.  In 

particular, Chang and Ayyub (2001) have shown that as b approaches 1 the fuzziness of 

the model increases.  In several cases (Tanaka et al., 1982; Bardossy et al., 1990; Savic 

and Pedrycz, 1991; Uddameri, 2004; Si and Bodhinayake, 2005; Uddameri and 

Honnungar, 2007) b values of 0.5 to 0.75 have been used.   

The FLSR model is a two-step process (Savic and Pedrycz, 1991).  First the fuzzy 

coefficient centers mj are determined from ordinary least-squares regression, i.e., the ei 

are considered to equal zero.  Once these center values are obtained the values are 

substituted in Eqs. (3.4) and (3.5) above and the optimization problem (Eqs. (3.2) – (3.5)) 

is solved in order to obtain the halfwidth values, cj. 

One of the limitations of FR and FLSR is that as b and the ei tend to zero the results 

of the regression do not converge to those of ordinary regression as would be expected.  
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In reviewing the above method, upon examination of the case where b and ei are set equal 

to zero, the constraints in Eqs. (3.4) and (3.5) reduce to: 



mjxij  cj | xij |   yi    for i1 to n,
j0

1


j0

1

   
(3.7) 



mjxij  cj | xij |   yi   for i1 to n.
j0

1


j0

1

   
(3.8) 

Now by letting yi = yi,observed, recalling that xi0 = 1, and expanding Eqs. (3.7) and (3.8) 

yields 



m0 m1xi1  c0  c1 | xi1 |   yi,observed    for i1 to n, 
(3.9) 



m0 m1xi1   c0 c1 | xi1 |   yi,observed    for i1 to n. 
(3.10) 

Recalling that the mj are obtained using least-squares regression, it can be written that 



m0 m1xi1  yi,calculated.  (3.11) 

Substituting Eq. (3.11) into Eqs. (3.9) and (3.10) yields 



c0  c1 | xi1 |   yi,observed  yi,calculated       for i1 to n, 
(3.12) 



c0 c1 | xi1 |   yi,observed  yi,calculated       for i1 to n. 
(3.13) 

The right hand side of the constraints in Eqs. (3.12) and (3.13) introduces a difference 

between the observed and calculated yi based on the least-squares regression to determine 

the mj.  Because of this difference, the use of yi,observed in Eqs. (3.4) and (3.5) introduces an 

artificial fuzziness into the model. This fuzziness is manifested in cj that can take non-

zero values even for crisp observed data, which is not desirable when assessing the effect 

of non-crisp observed data on calculated model results.  Therefore, in the MFLSR 

method, yi,calculated  is used, and in doing so the model also converges to crisp results as 

desired when observed data are crisp. 
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In the cases where there exist non-crisp observed data (i.e., ei > 0), it can be easily 

shown that the use of yi,calculated cancels the effect of the measure of compatibility b in Eq. 

(3.6) by setting its effective value to 0: 

 n.1,2,...,for       0)(  iyiY  
(3.14) 

From a fuzzy set theoretic point of view, the comparison of Eqs. (3.6) and (3.14) requires 

a distinction between uncertain and imprecise model results.  The membership function 

in Eq. (3.6) refers to an imprecise (or fuzzy) value that is certain to a degree of 1 - b (i.e., 

imprecise and uncertain), whereas the membership function in Eq. (3.14) refers to an 

imprecise value that is certain to a degree of 1 (i.e., imprecise and certain) (Dubois et al., 

1988).  It is an objective in this paper to quantify and propagate the imprecision in the 

observed data, therefore the resulting effective value of b = 0 due to the use of yi,calculated is 

consistent with the application.  The above considerations modify the FLSR method to 

the MFLSR approach in the following form: 





n

1i

10    ||cnc        Minimize ix  
(3.15) 

subject to the following constraints: 

 0.c 0;c

       n,  to1ifor      || 

10

1

0

 




j

iijj exc
 

(3.16) 

The hybrid method (Chang, 2001), which uses weighted fuzzy arithmetic and the 

least-squares fitting-criterion, was an alternative approach that was considered as it 

addressed the issue of convergence upon crisp results given crisp data.  The method was 

used as a comparison for the results obtained during the analysis with MFLSR.  For 

details on the method the reader is referred to the original paper, Chang (2001). 
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3.4 Cooper-Jacob Equation 

A typical representation of the Cooper-Jacob method (Cooper and Jacob, 1946) is 

given as follows: 

 ))ln(5772.0(
4

u
T

Q
s 


 

(3.17) 

for sufficiently small u, where 
Tt

Sr
u

4

2

  , r is the distance from the pumping well to the 

observation well (L), S is the storage coefficient (dimensionless), T is the transmissivity 

(L
2
/time), t is time, Q is the pumping rate (L

3
/time), and s is the drawdown (L).  

Expanding Eq. (3.17) and substituting for u provides the following equation 
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(3.18) 

which is the equation of a straight line where s can be viewed as a function of 1/t.  

Therefore, the slope is 
T

Q

4
 and T can be solved for directly.  Typically, this method 

solves for storativity, S, by extrapolating the line to where it intercepts the time axis 

(where s = 0).  This is denoted as t0.  Through some manipulation, S can be obtained from 

the following relation 

.
25.2

2

0

r

Tt
S   

(3.19) 

This method was not used to solve for the storage coefficient in this paper since it is not 

clear how to define a fuzzy zero drawdown value in order to extrapolate the regression to 

determine t0.  A more direct approach was chosen instead and the details are explained in 

section 3.5.3. 
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3.5 Calculations 

To test the impact of imprecision in the dependent variable (water levels), attributable 

to model error, on the uncertainty of the computed transmissivity and storage coefficient, 

a data set created in an intermediate scale groundwater facility was used in conjunction 

with fuzzy least-squares regression.  The data set consisted of change in pressure values 

in observation wells in response to a pumping test.  The pressure changes were measured 

using a pressure transducer connected to a continuous recording device.  The values so 

measured are assumed to have negligible measurement error.  The data set contains 220 

points, where the pumping rate was 3.75 cm
3
/s with a distance of 133.78 cm between the 

observation and pumping well, Table 3.1.  While in this particular case there is a large 

number of data available for analysis, the same methodology can be applied to data sets 

with fewer points.  To explore the sensitivity of this, a second analysis was conducted 

where the number of data points was reduced by a factor of two.  The results of the 

second analysis proved to be very similar to the results presented in this section for the 

full data set.  

As noted earlier, while the values observed are crisp their interpretation in terms of 

the mathematical model underlying the „straight-line‟ method of analysis contains the 

model error .  In other words, it should be expected that the water level values when  

Table 3.1: Pumping well data 

Data points in the set 
Discharge rate, Q 

(cm
3
/s) 

Distance between 

observation and 

pumping well, r (cm) 

220 3.75 133.78 
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used in the „straight-line‟ method are imprecise and that imprecision is reflected in 

imprecision in the resulting parameters.  The degree of uncertainty is a function of the 

inconsistency between the simplified mathematical model used and physical model 

producing the measurement values.  The higher the degree of heterogeneity and flow 

complexity, the less confident the analyst is that the head values observed represent the 

set of values that, via the „straight-line‟ method, would produce an accurate volume 

averaged heterogeneous hydraulic conductivity.  The analyst is faced with determining 

through observation of the properties that constitute the reservoir and his/her professional 

experience, the level of confidence they have that the head values are consistent with the 

set of values which, if placed in the „straight-line‟ model would provide the best volume 

averaged heterogeneous hydraulic conductivity.  

The data set considered is, by design of the intermediate scale facility, relatively 

homogeneous.  Thus, the imprecision in the head values, in the context of the above, is 

relatively small.  This small imprecision is reflected in the form of the membership 

functions that exhibit 10% (epistemic) uncertainty.  In a field situation, it would be 

anticipated that a greater degree of imprecision would be assigned to the data and in an 

effort to illustrate this situation an extreme value of 50% is also assumed.  The following 

results show how the imprecision in the water-level values impacts the uncertainty in the 

estimated parameters. 
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3.5.1 Optimization Results 

The optimization problems were solved using the „linprog‟ function in MATLAB 

(The MathWorks).  Solving the inverse problem using the MFLSR method, the following 

fuzzy coefficients were obtained: 

Y10=(0.067207, 0.006721) + (-0.046013, 0.004601) X 
(3.20) 

for the 10% (epistemic) uncertainty case and 

Y50=(0.067207, 0.033603) + (-0.046013, 0.023007)X 
(3.21) 

for the 50% (epistemic) uncertainty case.  Since the fuzzy centers were determined via 

ordinary least-squares regression they are identical to the intercept and slope of a least-

squares regression.  In this study since the spread of the data is a percentage applied to 

the entire data set, the halfwidths are this same percentage of the center.  Based on the 

linear equation from the Cooper-Jacob method, since the intercepts and the slopes have 

nonzero halfwidths, Figs. 3.1 and 3.2, the storage coefficient and transmissivity must be 

fuzzy numbers, the calculation of these values follows in the next two sections.  Figs. 3.3 

and 3.4 show how these regression results relate to the observed data. 

For comparison, the results of the FLSR method as proposed by Savic and Pedrycz  

 (1991) and the hybrid method (Chang, 2001) are listed in Table 3.2.  For these methods 

the independent data were the same, but the dependent data were the observed drawdown 

values, not the calculated values as is used in the MFLSR.  All three methods have the 

same fuzzy centers and they are equivalent to the coefficients of the ordinary least-

squares regression.  The MFLSR method produces halfwidths smaller than the FLSR 

except for the slope halfwidth in the 10% case that is essentially zero. This is not an 

uncommon occurrence with the FLSR method (Savic and Pedrycz, 1991; Uddameri,    
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Figure 3.3: This plot shows how the observed data is “bounded” by the results of the 

modified fuzzy least-squares regression results for the 10% (epistemic) uncertainty 

case. 

 

Figure 3.4: This plot shows how the observed data is “bounded” by the results of the 

modified fuzzy least-squares regression results for the 50% (epistemic) uncertainty 

case. 
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Table 3.2: Results of various fuzzy regression methods 

 10% Uncertainty 50% Uncertainty 

 
0

~

A  1

~

A  0

~

A  1

~

A  

 m0 c0 m1 c1 m0 c0 m1 c1 

Savic and 

Pedrycz 

FLSR 

 

 

0.06721 

 

 

0.06450 

 

 

-0.04601 

 

 

1.75E-14 

 

 

0.06721 

 

 

0.04500 

 

 

-0.04601 

 

 

0.02430 

Hybrid 

FLSR 
 

0.06721 

 

0.00672 

 

-0.04601 

 

-0.00460 

 

0.06721 

 

0.03360 

 

-0.04601 

 

-0.02301 

MFLSR 
 

0.06721 

 

0.00672 

 

-0.04601 

 

0.00460 

 

0.06721 

 

0.03360 

 

-0.04601 

 

0.02301 

 

2004; Si and Bodhinayake, 2005; and Uddameri and Honnungar, 2007).  In this case, the 

halfwidth is determined to be zero by FLSR due to the minimization of the objective 

function in Eq. (3.3).  The slope halfwidth will have a small (near zero) value when the 

sum of the |xi| is greater than n.  The technique of MFLSR addresses this issue by 

allowing the fuzziness to be distributed over both the intercept and the slope halfwidths. 

The halfwidths of the MFLSR are equivalent to the absolute value of the halfwidths of 

the hybrid method.  The hybrid method, however, has the tendency to produce 

counterintuitive negative halfwidths.  Spreads or halfwidths are commonly defined as 

positive values. 

3.5.2 Transmissivity 

Recall from the Cooper-Jacob method that the slope of the linear equation is used to 

solve for transmissivity.  Since the numbers being dealt with are no longer crisp, in order 

to solve for transmissivity, the following equation would have to be solved: 



T10  
Q

4(-0.046013, 0.004601) 
  

(3.22) 
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for the 10% case and for the 50% case the equation would be: 

 
0.023007) ,(-0.0460134

50


Q
T   

(3.23) 

where the values contained in the parentheses are the fuzzy slopes obtained from the 1

~

A  

term in Eqs. (3.20) and (3.21).  In order to solve these equations, a Fortran 90 based 

program, ExtFUZZ, written by Ozbek and Pinder (2005), was used to perform the 

calculations.  The program ExtFUZZ implements the n-dimensional form of the 

extension principle (Zadeh, 1975).  From Dubois and Prade (1991) the extension 

principle can be written as: 

)},...,,(|))(),...,(),(sup{min()( 2121),...,( 211 nnFFFFFf xxxfyxxxy
nn

 

 (3.24) 

where )(),...,( 1
y

nFFf  represents the membership function of the fuzzy result ),...,( 1 nFFf of 

the state variable y and 
1F  denotes the membership function of the fuzzy set associated 

with input parameter i. 

Here, the implementation of the extension principle applied to fuzzy sets is based on a 

linear approximation of f.  Given the inquiry on )(),...,( 1
y

nFFf  which represents the degree 

of membership of y as the value of the model state variable, it proceeds in three steps: 

Step 1: 

A Delaunay tessellation of the n-dimensional parameter space is constructed.  This 

results in a number of simplices.  In an n-dimensional problem each simplex will have 

n+1 vertices.  For example, in the two-dimensional case, if f is evaluated at only four 

vertices, this will result in two triangular simplices.  The tessellation of the parameter is 
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then followed by the identification of simplices X
j
 , j = 1,…,K that contain y.  A simplex 

contains y if 

i

j
j

i

j
i

fyf maxmin   
(3.25) 

holds where i

jf  denotes the function value at vertex i of simplex X
j
.   

Finally, a trial function jf̂  is constructed within each of the K simplices.  The trial 

function gives the exact function value at the vertices and uses a linear approximation of f 

within the simplex: 

.),...,(ˆ

1

11 



n

i

j

ni

i

jn

j axaxxf  
(3.26) 

Step 2: 

An optimization (linear programming) is performed within each simplex X
j
 of Step 1: 

ja       max  
(3.27) 

subject to: 

yxxxf

niax

n

j

j

iFi





),...,,(ˆ

,...,2,1      )(              

21


 

(3.28) 

for j = 1,2,…,K. 

Step 3: 

Using a
j
 of Step 2, )(),...,( 1

y
nFFf  is determined as: 

.max)(),...,( 1

j

j
FFf ay

n
  

(3.29) 

The code is written such that the results are sent to a MATLAB m-file from which the 

membership functions of the n inputs, and the newly calculated transmissivity 

membership function can be plotted.  The resulting membership functions for 
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transmissivity for the MFLSR method are shown in Fig. 3.5.   The supports of the fuzzy 

membership functions for the 10% and 50% uncertainty cases are 5.62 cm
2
/s to 7.59 

cm
2
/s and 4.12 cm

2
/s to 13.65 cm

2
/s, respectively.  The transmissivity value with a 

membership degree of one in both cases coincides with the transmissivity value that 

would be obtained via the standard Cooper-Jacob method, 6.49 cm
2
/s. 

3.5.3  Storage Coefficient 

Since both the intercept and slope are fuzzy numbers, instead of using the typical 

Cooper-Jacob method explained earlier in this paper, a more direct calculation for the 

storage coefficient uses Eq. (3.18) and the fact that the value of the first term is known, it 

is the value of the intercept from the regression optimizations, namely 0

~

A . Therefore, 

 

Figure 3.5: Transmissivity membership functions for the 10% and 50% (epistemic) 

uncertainty cases using modified fuzzy least-squares regression. 
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(3.30) 

where 
~

T and 
~

S are the fuzzy transmissivity and fuzzy storage coefficient values, 

respectively.  Upon rearranging, 



S
~


4T

~

r2
exp

4 T
~

Q
[A0

~

]0.5772














 .  

(3.31) 

In general, to solve the above equation, two known fuzzy numbers, 
~

T and 
~

0A , must be 

used to calculate the fuzzy storativity membership function, 
~

S .  ExtFUZZ is called upon 

again in order to solve Eq. (3.31) for the storativity membership function.  

Using the 
~

0A  terms from Eqs. (3.20) and (3.21) for the 10% and 50% (epistemic) 

uncertainty cases, respectively, and the corresponding transmissivity membership 

functions obtained in 3.5.2, results in the storativity membership functions as seen in Fig. 

3.6.  The supports of the storativity membership functions for the 10% and 50% 

uncertainty cases are 1.26 x 10
-4

 to 2.40 x 10
-4

 and 1.11 x 10
-5

 to 4.32 x 10
-4

, respectively. 

Similar to the transmissivity case, the storativity value with a membership degree of one 

in both cases coincides with the storativity of this data set calculated using the standard 

Cooper-Jacob method, 1.89 x 10
-4

. 
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Figure 3.6: Storativity membership functions for the 10% and 50% (epistemic) 

uncertainty cases using modified fuzzy least-squares regression. 

3.6 Disscussion and Conclusions 

This paper looks at how to incorporate epistemic uncertainty (different from the well-

studied aleatory uncertainty) into the „straight-line‟ method, developed by Cooper and 

Jacob (1946), for pump test analysis.  More specifically, the impact of model uncertainty 

on transmissivity and the storage coefficient is examined.   

Since, traditionally, ordinary linear regression is used to solve for the transmissivity 

and storage coefficient via the Cooper-Jacob method, fuzzy least-squares regression 

seems an appropriate method to examine the epistemic uncertainty associated with these 

resulting parameters.  In this paper a modified fuzzy least-squares regression was used 

instead of one of the pre-existing fuzzy least-squares regression methods because it had 

the following benefits, beyond those of FLSR and the hybrid approach: 1) the limitation 
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on fuzzy regression and fuzzy least-squares regression, that as the data approach crisp 

values the regression solution does not converge to the ordinary least-squares regression, 

is removed, 2) the optimization problem is simple to solve, 3) the distribution of the 

model fuzziness is more evenly distributed amongst the regression coefficients (the 

halfwidths on the coefficients are nonzero), and 4) compared to the hybrid method, the 

absolute values of the halfwidths are nearly identical, however the negative halfwidths 

that can be encountered using the hybrid method are avoided.  A negative halfwidth 

traditionally has no meaning since typically a halfwidth is defined as a positive value. 

The technique of using the MFLSR combined with the Cooper-Jacob method as 

described in this paper allowed for the incorporation of an uncertainty that has previously 

been neglected.  By assigning an imprecision around the measured data, traditionally 

treated as crisp values, the MFLSR method produces a fuzzy linear regression 

relationship that, when used in place of ordinary linear regression results in the Cooper-

Jacob equation, transmissivity and storage coefficient ranges, or membership functions, 

can be determined which better describe the uncertainty around those numbers.  For 

example, in the 50% case a membership function is obtained that has a transmissivity 

value with a membership degree of one at the 6.49 cm
2
/s, which is exactly what would be 

obtained using the standard Cooper-Jacob approach.  With the approach presented here, 

transmissivity is allowed to have varying values of degree of membership that increase 

with transmissivity values from 4.12 cm
2
/s to 6.49 cm

2
/s then decrease with 

transmissivity values from 6.49 cm
2
/s to 13.65 cm

2
/s.  Representing this epistemic 

uncertainty in transmissivity and storage coefficient values will allow for a better 

understanding of the heterogeneous subsurface. 
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CHAPTER 4                                                                        
FUZZY GENERALIZED REGRESSION NEURAL 

NETWORK METHODOLOGY    

4.1 Background  

A new artificial neural network was developed that combines fuzzy sets with 

generalized regression to address the relationships between physical habitat and the 

geomorphic condition of Vermont streams.  The focus is on using fuzzy numbers to 

capture expert information typically lost.  The Vermont Agency of Natural Resources 

(VTANR) River Management Program (RMP) has developed protocols, based on well-

known stream classification methods, to assess both the geomorphic condition (Rapid 

Geomorphic Assessment – RGA; Kline et al., 2007) and the physical habitat (Reach 

Habitat Assessment – RHA; Schiff et al., 2008) of a stream reach.  Both of these 

assessments involve expert-based field observations.  For example, in the RGA, experts 

assign a score between 0 (poor) and 20 (reference) to assess the four adjustment 

processes (i.e. degradation, aggradation, widening, and planform change) associated with 

stream geomorphic condition.  The sum of these four scores provides a total RGA score 

between 0 and 80, which is used subsequently to classify the stream reach into one of 

four overall condition categories: that is poor, fair, good, and reference. Assigning 

individual scores to a stream adjustment process, and ultimately an entire reach, relies not 

only on physical measurements, but also on expert opinion.  Figure 4.1 illustrates a small 

portion of the field assessment form for the RGA (Kline et al., 2007 – Appendix A).  As 

an example, protocol requires the expert to assign (circle) an integer score to the 

adjustment process for channel degradation (7.1 on the form), while determining the 
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overall (categorical) condition for the stream reach.  In Figure 4.1, the “x‟s‟ indicate an 

expert‟s field observations for a particular reach.  Once the evidence for channel 

degradation has been evaluated, the expert must choose, to the best of their knowledge, 

which of the four categories best describes the reach being studied and assign an integer 

score to this process.  Protocol advises the assessor to give greater weight to the channel 

and floodplain geometry changes (rows 2-4 under this particular adjustment process) than 

the human induced changes (the lower rows in the adjustment process).  In this example, 

the expert assigned a score of 12 to the adjustment process degradation.  However, in the 

field, experts express difficulty in assigning a single score.  It is common to hear, “the 

score could be as high as 14 and as low as 11” (personal communication, Kristen 

Underwood). 

Fuzzy numbers may provide a means to capture information that is lost when 

assigning a crisp number to a process that uses subjective information and expert opinion.  

A fuzzy number can capture the opinion that the process score is “around 12.”  In this 

work, Specht‟s (1991) generalized regression neural network (GRNN) is modified to 

allow the use of fuzzy numbers to capture the imprecision of the assessor‟s opinion.  A 

new predictive fuzzy algorithm is developed.  The Vertex Method (Dong and Shah, 

1987), an approximation to the Extension Principle (Zadeh, 1975), is implemented to 

solve the resulting fuzzy equations.  A small example shows how the new methodology is 

designed to capture the imprecision associated with assigning RGA scores to stream 

reaches.  As a result, one may account for information typically lost during expert 

assessments.  Knowing the imprecision associated with expert assessments may be more 

important than knowing a crisp number, when flagging reaches for further study.  



 

Figure 4.1: Channel degradation section of the VTANR Rapid Geomorphic Assessment field form found in Appendix A of 

Kline et al., 2007. 
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The next section provides a brief introduction to the GRNN algorithm and the Vertex 

Method to facilitate the subsequent development of the fuzzy GRNN algorithm.  An 

example calculation is presented to demonstrate the performance of the algorithm.  The 

chapter concludes with a discussion of the strengths and challenges associated with 

utilization of this algorithm. 

4.2 Methodology 

4.2.1 Generalized Regression Neural Network 

The GRNN introduced by Donald Specht (1991) is a parallel, one-pass algorithm 

designed to perform least-squares generalized regression.  The network does not require 

iterative training like the more popular feed-forward backpropagation networks.  The 

training data are used to set the network weights.  What makes this algorithm unique, 

aside from it‟s parallel computational nature, is that it does not require a priori 

knowledge of the function that best fits the data.  Figure 4.2 shows the structure of the 

GRNN algorithm as applied to the prediction of stream RHA scores using the four 

adjustment processes that comprise the RGA (degradation, aggradation, widening, and 

planform change) as inputs.  These input variables are equivalent to the independent 

variables associated with traditional regression techniques. 

To begin, the algorithm needs both training data and testing/prediction data.  The 

training data set consists of k training patterns.  A single pattern is defined as one set of n 

input variables, 



X {xi1,xi2,...,xin} and the corresponding output (dependent) variable, 

yj.  In this algorithm, the training input variables are also the network weights; thus X = 



W j {w1 j,w2 j,...wnj}.  The prediction data set consists of additional input patterns (each 
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Figure 4.2:  GRNN structure showing the four components of the RGA as inputs 

used to predict the total Legacy RHA score. 

 

comprised of n input variables) for which the user would like predictions. 

The GRNN network consists of four nodal layers.  The first Input Layer simply 

passes the n input variables, 



X {xi1,xi2,...,xin}, to the weights of the next network 

layer.  The training weights, wij, connect the Input Layer to the Pattern Units layer (e.g. 

w12 connects input node xi=1 with pattern unit node Ij=2).  These weights are set by the 

training data and do not update as in other artificial neural network (ANN) algorithms.  

Each j
th

 training pattern weight, wij, contains a value (e.g., degradation, aggradation, 

widening, planform change) for which there is a corresponding output (RHA score).  The 

RHA score is stored in the weights, yj, associated with node A of the Summation Units 

layer (Figure 4.2).  The Pattern Units layer has one node for each of the j training 
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patterns and calculates a distance metric (e.g., the Euclidean distance) between all sets of 

training weights and the current input pattern for which a prediction is desired (Eqn. 4.1): 



I j  (wij  x i
i1

n

 )2
, (4.1) 

where xi refers to the i
th

 input parameter, wij are weights associated with the i
th

 input 

variable and the j
th

 training pattern.  The resulting Euclidean distance, Ij, is passed 

through an exponential activation function (Eqn. 4.2): 



f (I j )  exp
I j

2 2









, (4.2) 

where  is a smoothing parameter explained in greater detail below.   

The third layer, Summation Units, calculates the dot product of the output from the 

Pattern Units (Eqn. 4.2) and, for node A, the corresponding output training weights, yj.  

The weights associated with node B are set equal to 1; node B calculates the dot product 

between the output from the Pattern Units and the weights set equal to 1.  The final 

output is the result of dividing the nodes in the Summation Units: 



y
^

(X) 

y j  f (I j)
j



1 f (I j)
j



A

B
. 

(4.3) 

Recall that the weights are fixed in the GRNN algorithm.  Thus,  (Eqn. 4.2) is the only 

parameter that may be adjusted by the user and is used to optimize the GRNN output.  As 

 approaches zero, the predicted network output, 



y


, tends to overfit the training data.  

When  is large, 



y


 is smoothed and assumes the value of the sample mean.  For details, 
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the reader is referred to Specht (1991).  The GRNN algorithm described in this paper was 

written in MATLAB 7.10.0 (R2010a). 

4.2.1.1 Example of GRNN Calculation 

To illustrate how the GRNN works, an example is presented using one expert‟s 

assessed RGA components (degradation, aggradation, widening, and planform change) to 

predict a total RHA score (the response variable) for a particular stream reach since a 

correlation between the two parameters has been previously shown (Chapter 5, Figure 

5.4).  Training patterns from 20 stream reaches in Vermont along the Lewis Creek and 

prediction patterns from 38 Middlebury River reaches that have expert assessed RGA and 

RHA data are provided in Tables 4.1 and 4.2, respectively.  These reaches have been 

selected for use in past ANN studies (Doris, 2006; Besaw et al., 2009) due to the 

similarities in watershed size and land cover type. 

Choosing to demonstrate the computational numerics with Middlebury River reach 

M01 as the prediction pattern, Eqn. 4.1 is calculated for j = 1 and j = 2 as follows: 



I1  (x1 w11)
2  (x2 w21)

2  (x3 w31)
2  (x4 w41)

2

   (1818)2  (1117)2  (1318)2  (1518)2

   8.37

I2  (x1 w12)
2  (x2 w22)

2  (x3 w32)
2  (x4 w42)

2

   (1818)2  (1115)2  (1313)2  (1516)2   

   4.12.

 

The remainder of the Ij calculations follow similarly and the results are shown in Table 

4.3.  Passing I1 through the activation function (Eqn. 4.2) with  = 0.55 yields:  



f (I1)  exp
I1

2 2









 exp

8.37

2(0.55)2









 9.87107  



 68 

Table 4.1: Lewis Creek training data for GRNN example. 

Reach ID 
Degradation 

Score 

Aggradation 

Score 

Widening 

Score 

Planform 

Change 

Score 

RHA 

Total 

Score 

j=1 M07 18 17 18 18 175 

j=2 M18 18 15 13 16 186 

j=3 T2.01 18 18 17 17 169 

j=4 M05 15 13 14 15 155 

j=5 M14 18 15 15 18 152 

j=6 M15A 18 10 13 8 135 

j=7 M17B 18 11 15 8 138 

j=8 M19A 18 15 16 11 133 

j=9 M20B 5 10 10 13 143 

j=10 M03 18 13 16 13 123 

j=11 M15B 16 11 10 6 119 

j=12 M16 16 15 6 11 122 

j=13 M17A 15 13 15 11 127 

j=14 M17C 10 15 11 13 128 

j=15 M19B 13 13 13 11 125 

j=16 M20A 8 11 13 8 110 

j=17 M21A 10 13 10 13 125 

j=18 M21B 8 11 13 6 111 

j=19 M22 11 13 11 10 105 

j=k=20 T4.3S6.01 18 8 13 11 100 

 

for the first Pattern Unit node.  The remaining f(Ij) results are listed in Table 4.3.   

To calculate node A, the dot product of yj (the total RHA scores, Table 4.1, last 

column) and the f(Ij) (Table 4.3) is taken: 



A  (175)(9.87107) (186)(1.10103) (169)(1.09106) ... (100)(2.58104 )

 0.7222.
 

Similarly, node B is calculated as: 

 



B  (1)(9.87107) (1)(1.10103) (1)(1.09106) ... (1)(2.58104 )

 0.0048.
 

The predicted GRNN output for this stream reach is a total RHA score of: 



y
^


A

B
151, 
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Table 4.2:  Middlebury River prediction data for GRNN example.  

Reach 

ID 

Degradation 

Score 

Aggradation 

Score 

Widening 

Score 

Planform 

Change 

RHA Total 

Score 

GRNN 

Prediction 

M01 18 11 13 15 131 151 

M02 18 13 10 10 142 127 

M03 16 13 11 13 142 145 

M04 15 11 8 5 127 119 

M05 16 10 11 5 137 119 

M06A 13 11 15 15 112 152 

M06B 6 8 8 3 122 111 

M07 8 13 13 10 115 111 

M08A 3 13 13 15 145 143 

M11 16 13 13 13 146 144 

M12A 10 13 13 10 133 110 

M12C 5 13 15 8 131 110 

M13A 13 8 11 6 138 119 

M13B 5 15 11 15 110 133 

M14 18 11 15 10 137 135 

M15 11 16 15 13 129 128 

M16 16 10 12 8 147 131 

M17 3 10 10 8 146 130 

M18 16 10 11 10 159 121 

M19 13 13 11 10 144 113 

T3.01 18 18 18 18 158 173 

T3.02 18 16 13 11 150 134 

T3.03 18 16 18 18 170 174 

T3.04 18 15 18 16 180 167 

T3.05 18 18 18 16 177 170 

T3.06 18 16 13 13 158 164 

T3.08 19 12 14 15 145 147 

T3.09 19 18 16 17 176 169 

T3.10 19 19 18 16 176 170 

T4.01 10 15 15 13 159 127 

T4.02 13 13 13 11 157 125 

T4.03A 5 15 11 15 162 133 

T4.03B 14 11 13 8 129 125 

T4.04A 16 10 15 10 145 129 

T4.04B 11 7 8 6 105 115 

T4.05 13 13 13 13 129 129 

T4.07A 10 10 10 8 119 109 

T4.07B 16 11 15 11 141 127 
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Table 4.3: Results of Pattern Unit calculations (Figure 4.2, Eqns. 4.1 and 4.2). 

Pattern 

Unit Node 

Number Ij f(Ij) 

1 8.37 9.87E-07 

2 4.12 1.10E-03 

3 8.31 1.09E-06 

4 3.74 2.06E-03 

5 5.39 1.36E-04 

6 7.07 8.40E-06 

7 7.28 5.94E-06 

8 6.40 2.53E-05 

9 13.53 1.95E-10 

10 4.12 1.10E-03 

11 9.70 1.10E-07 

12 9.22 2.41E-07 

13 5.74 7.52E-05 

14 9.38 1.85E-07 

15 6.71 1.53E-05 

16 12.21 1.73E-09 

17 9.00 3.46E-07 

18 13.45 2.20E-10 

19 9.06 3.16E-07 

20 5.00 2.58E-04 

 

(Table 4.2, last column) which classifies as a good habitat condition stream.  The expert 

assigned RHA score is 131, which is also classified as a good habitat condition.   

4.2.2 Vertex Method 

This section will begin with terminology definitions specific to fuzzy set theory.  A 

fuzzy set can be described as a set whose elements have varying degrees of membership 

(e.g. the sets large, medium, and small) and the elements can have membership in more 

than one set.  This is unlike crisp sets, where an element either belongs to a set or it 

doesn‟t.  A fuzzy set is normal if it has at least one element whose membership degree is 

equal to one.  The support of a fuzzy set is defined as the crisp set of all the elements of  



 71 

 

Figure 4.3:  Example of a fuzzy number output from the FuzzyGRNN.  The dashed 

vertical lines show the interval cutoff values for an -cut at membership degree 0.6 

(e.g. 
0.6

C = [148, 152]). 

 

the fuzzy set with nonzero membership degrees.  An -cut is a crisp set, 

C, on the fuzzy 

set 



C
~

 that contains all the elements of 



C
~

whose membership degree is greater than or 

equal to the  value.  Figure 4.3 shows an example -cut at membership degree 0.6 on an 

example fuzzy number.  A fuzzy number is a convex, normal fuzzy set on the set of real 

numbers with a bounded support and every -cut must be a closed interval.  To perform 

function evaluations using fuzzy numbers that are traditionally used on crisp numbers, 

the function must be fuzzified.  The principle that allows for this is known as the 

Extension Principle (Zadeh, 1975), which generates μ, the membership function of the 

given fuzzy set, and is defined as follows: 
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


D
~ (t) 

sup
t f (s1 ,s2 ,...,sn )

min 
C
~

1

(s1),
C
~

2

(s2),...,
C
~

n

(sn ) 
                               if  t = f (s1,s2,...,sn )

            0                otherwise













, 

(4.4) 

where si is an independent variable and 



C
~

i is its fuzzy set.  Then, t = f(s1, s2, …sn) is the  

dependent variable and 



D
~

 is the fuzzy set for t.  For details on fuzzy set theory, Klir and 

Yuan (1995) provide a good introduction.  

Given the challenges associated with the computational coding of the expression in 

Eqn. 4.4, several approximations to the Extension Principle have been adopted.  One 

approach is to discretize the fuzzy numbers, and then apply the Extension Principle.  

There is also the DSW method (Dong et al., 1985) and the Vertex Method (Dong and 

Shah, 1987), each of which begin by representing the fuzzy numbers as a series of -cuts.  

For example, the fuzzy number in Figure 4.3 may be represented using 
0
C = [145, 155]; 

0.5
C = [147.5, 152.5];

 1.0
C = [150, 150].  The DSW method uses the -cut defined 

intervals to carry out the mathematical function(s) using standard interval analysis rules.  

The Vertex Method (the method chosen for this analysis) can reduce abnormalities in the 

observed output when using the Extension Principle on a discretized set (Ross, 2004), 

resulting from the number of discretizations.  The Vertex Method is computationally 

easier to implement and differs from the DSW method in that it deals only with the 

interval endpoints defined by the -cuts. Ross (2004) provides a nice comparison of these 

three methods.  To apply the Vertex Method, the function must be continuous and 

monotonic.  If there are extreme values in the function, the method may omit calculating 
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these; therefore, extreme values are treated as possible vertices along with the interval 

endpoints (see Eqn. 4.5).   

Letting the -cut intervals be represented by 

C = [a,b] and the extreme value(s) (if 

there are any) be denoted as Ei, then the value of the function, f(s), evaluated at the 

endpoints of the interval of the given  value, denoted f(

C), is defined as: 



f (C)  [min( f (a), f (b),Ei),max( f (a), f (b),Ei)]. 
(4.5) 

4.2.3 Fuzzifying the GRNN 

The algorithm designed here (Appendix A) allows fuzzy numbers as input that are 

triangular, but not necessarily symmetrical.  The current algorithm is designed to work 

with a function that discretizes these fuzzy numbers, along with the user-supplied training 

weights, prediction patterns, and discretization size of the fuzzy number (i.e. values of the 

-cuts at which to evaluate the function for the Vertex Method).  The discretized function 

assumes that the edges of the triangular membership function are linear.  The algorithm 

can accommodate triangular membership functions without linear edges by not calling 

the discretization function and using user-described -cuts. 

Note that the Vertex Method is applied to the entire algorithm and not at each nodal 

layer.  More specifically, the input variables of each -cut are carried through all steps of 

the GRNN and the final step, taking the minimum and maximum, provide an output 

interval for the given -cut.   If one makes the mistake of performing the Vertex Method 

for every mathematical operation at each layer, vertices that do not exist in the initial 

problem are introduced resulting in orders of magnitude of spread in the final output.  

This can produce membership functions that are meaningless in many applications.   
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Table 4.4:  The two training input weights (a) and training pattern weights (b) for 

the example in Section 4.2.3.  The prediction input variables are presented in (c). 

(a) 

Training 



w11

~

 



w12

~

 



w21

~

 



w22

~

 

-cut Left 

Bound 

Right 

Bound 

Left 

Bound 

Right 

Bound 

Left 

Bound 

Right 

Bound 

Left 

Bound 

Right 

Bound 

0 17 19 15 17 5 7 12 14 

0.25 17.25 18.75 15.25 16.75 5.25 6.75 12.25 13.75 

0.50 17.5 18.5 15.5 16.5 5.5 6.5 12.5 13.5 

0.75 17.75 18.25 15.75 16.25 5.75 6.25 12.75 13.25 

1 18 18 16 16 6 6 13 13 

 

(b) 

Training 



y
~

1 



y
~

2 

  -cut Left 

Bound 

Right 

Bound 

Left 

Bound 

Right 

Bound 

0 22 26 27 31 

0.25 22.5 25.5 27.5 30.5 

0.50 23 25 28 30 

0.75 23.5 24.5 28.5 29.5 

1 24 24 29 29 

 

A simple example is provided to illustrate how the algorithm works.  With Eqn. 4.3 in 

mind, consider a network with 2 input nodes, 



x1

~

 and 



x2

~

, and using 2 training patterns 

(training weights 



w11

~

,



w12

~

,



w21

~

, and 



w22

~

, and corresponding pattern weights 



y
~

1 and 



y
~

2).  

Table 4.4 lists the training data in (a) and (b) and prediction inputs (c) after being passed 

through the discretization function.  For each -cut, the left and right bound of the 

interval are given.  Recall that the weights connecting the Pattern Unit nodes to node B 

are equal to 1 and that a crisp number may be represented in interval form as [1,1].  

Running the algorithm one -cut at a time, the distance between the input nodes and the 

training weights is calculated producing 4 possible outcomes for each input node and 

weight combination.  For example, consider  = 0.5, then 



x1

~

 = [10.5,11.5] and 



w11

~

=  

 

(c) 

Predict 



x1

~

 



x2

~

 

  -cut Left 

Bound 

Right 

Bound 

Left 

Bound 

Right 

Bound 

0 10 12 7 9 

0.25 10.25 11.75 7.25 8.75 

0.50 10.5 11.5 7.5 8.5 

0.75 10.75 11.25 7.75 8.25 

1 11 11 8 8 



 75 

[17.5,18.5].  The possible squared distances for these two fuzzy numbers are: 



([10.5,11.5] [17.5,18.5])2  (10.517.5)2  or (10.5 -18.5)2

or (11.517.5)2  or (11.5 -18.5)2

 49   or   64   or   36   or   49.

 (4.6) 

The remaining distance calculations are listed in Table 4.5.  Next, all possible 

summations must be performed at each Pattern Unit node.  Given 2 weights connected to 

each node each with 4 possible outcomes, there are 16 possible summations.  The 16 

possible values for I1 are the square root of all summation combinations of 



(x1

~

w
~

11)
2
 and 



(x2

~

w
~

21)
2
, and, similarly for I2, the square root of all summation combinations of 



(x1

~

w
~

12)
2
 and 



(x2

~

w
~

22)
2
 (Table 4.6).  These values are then passed through the 

activation function (Eqn. 4.2, Table 4.6).  The output values from each Pattern Unit node 

connected to node A are multiplied by a pattern weight, 



y j

~

, producing 32 possible 

outcomes from each Pattern Unit node.  So, if the first possible outcome from I1, f(I1) = 

6.89 x 10
-4

 (Table 4.6), is multiplied by 



y1

~

 = [22,26] (Table 4.4 (b)), two possible 

outcomes are produced (Table 4.7, associated with Node A).  Similar calculations for the 

remaining possible Pattern Unit output (f(Ij)) results are listed in Table 4.7.  All 

combinations are then summed at node A.  

 

Table 4.5:  Results of taking the distance between the fuzzy input variables and the 

fuzzy training weights for the 0.5 -cut in the example in Section 4.2.3. 



(x1

~

w
~

11)
2
 



(x1

~

w
~

12)
2
 



(x2

~

w
~

21)
2
 



(x2

~

w
~

22)
2
 

49 25 4 25 

64 36 1 36 

36 16 9 16 

49 25 4 25 
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Table 4.6:  Pattern Unit results for example in Section 4.2.3. 

I1 
f(I1) 


2
 = 0.5 

I2 
f(I2) 


2
 = 0.5 

7.28 6.89E-04 7.07 8.49E-04 

7.28 6.89E-04 7.07 8.49E-04 

7.07 8.49E-04 7.81 4.06E-04 

7.62 4.93E-04 6.40 1.66E-03 

7.28 6.89E-04 7.07 8.49E-04 

7.28 6.89E-04 7.07 8.49E-04 

7.07 8.49E-04 7.81 4.06E-04 

7.62 4.93E-04 6.40 1.66E-03 

8.25 2.62E-04 7.81 4.06E-04 

8.25 2.62E-04 7.81 4.06E-04 

8.06 3.15E-04 8.49 2.06E-04 

8.54 1.95E-04 7.21 7.38E-04 

6.32 1.79E-03 6.40 1.66E-03 

6.32 1.79E-03 6.40 1.66E-03 

6.08 2.28E-03 7.21 7.38E-04 

6.71 1.22E-03 5.66 3.49E-03 

 

For example, the possible outcomes for node A start with: 

1.58E-02 + 2.38E-02 = 3.96E-02 or 

1.58E-02 + 2.55E-02 = 4.13E-02 or 

1.58E-02 + 2.38E-02 = 3.96E-02 or 

… 

and end with 

3.05E-02 + 1.05E-01 = 1.36E-01. 

In this example, the 2 Pattern Unit nodes connected to node A, result in 1,024 possible 

outcomes. 

Concurrently, similar calculations are being conducted for the Summation Unit node 

B and these divide the possibilities in node A; hence, there are 1,024 divisions.  The 

minimum and maximum of these possible outcomes are selected as the result for the  
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Table 4.7:  Results of multiplication of output from Pattern Units by corresponding 

pattern weights for example in Section 4.2.3.  

Associated with Node A Associated with Node B 

Possible 

Outcomes from 

f(I1) x 



y1

~

 

Possible 

Outcomes from 

f(I2) x 



y2

~

 

Possible 

Outcomes from 

f(I1) x 1 

Possible 

Outcomes from 

f(I2) x 1 

1.58E-02 2.38E-02 6.89E-04 8.49E-04 

1.72E-02 2.55E-02 6.89E-04 8.49E-04 

1.58E-02 2.38E-02 6.89E-04 8.49E-04 

1.72E-02 2.55E-02 6.89E-04 8.49E-04 

1.95E-02 1.14E-02 8.49E-04 4.06E-04 

2.12E-02 1.22E-02 8.49E-04 4.06E-04 

1.13E-02 4.64E-02 4.93E-04 1.66E-03 

1.23E-02 4.97E-02 4.93E-04 1.66E-03 

1.58E-02 2.38E-02 6.89E-04 8.49E-04 

1.72E-02 2.55E-02 6.89E-04 8.49E-04 

1.58E-02 2.38E-02 6.89E-04 8.49E-04 

1.72E-02 2.55E-02 6.89E-04 8.49E-04 

1.95E-02 1.14E-02 8.49E-04 4.06E-04 

2.12E-02 1.22E-02 8.49E-04 4.06E-04 

1.13E-02 4.64E-02 4.93E-04 1.66E-03 

1.23E-02 4.97E-02 4.93E-04 1.66E-03 

6.03E-03 1.14E-02 2.62E-04 4.06E-04 

6.56E-03 1.22E-02 2.62E-04 4.06E-04 

6.03E-03 1.14E-02 2.62E-04 4.06E-04 

6.56E-03 1.22E-02 2.62E-04 4.06E-04 

7.25E-03 5.78E-03 3.15E-04 2.06E-04 

7.88E-03 6.19E-03 3.15E-04 2.06E-04 

4.48E-03 2.07E-02 1.95E-04 7.38E-04 

4.87E-03 2.22E-02 1.95E-04 7.38E-04 

4.12E-02 4.64E-02 1.79E-03 1.66E-03 

4.48E-02 4.97E-02 1.79E-03 1.66E-03 

4.12E-02 4.64E-02 1.79E-03 1.66E-03 

4.48E-02 4.97E-02 1.79E-03 1.66E-03 

5.25E-02 2.07E-02 2.28E-03 7.38E-04 

5.70E-02 2.22E-02 2.28E-03 7.38E-04 

2.81E-02 9.78E-02 1.22E-03 3.49E-03 

3.05E-02 1.05E-01 1.22E-03 3.49E-03 

 

particular -cut being analyzed.  Here, the minimum and maximum values of the 

divisions for the  = 0.5 are [23.41, 29.74].  These steps are repeated for each user-
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defined -cut.  Once all -cuts have been evaluated, the membership function can be 

constructed from these results (Figure 4.4).  

Equations 4.1, 4.2, and 4.3 may be rewritten to accommodate the Vertex Method and 

fuzzy numbers.  Taking a step back from Eqn. 4.1 and considering the distance metric 

itself yields:  



D
~

ijk  (wij

~

 xi

~

)2,       for k =1, 2, 3, 4 . (4.7) 

Then the Pattern Unit nodes may be constructed by summing all possible combinations 

of



D
~

ijk  entering node j and taking the square root.  This results in m = 2
n 

possible 



I j
m ,  

 

Figure 4.4:  Example final membership function output from the fuzzy GRNN. 
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where n is the number of fuzzy numbers associated with the node, (i.e. in the above 

example, each Ij node had 4 fuzzy numbers attached to it (2 input nodes and 2 weights), 

hence the m = 16 possible values for each Ij). 

Nodes A and B use the output from 



I j
m  to calculate the possible output values: 



y
~

p (X
~

) 
A
~

p

B
~

p

,      where p = (2n +1) j . (4.8) 

The values of 



A
~

p  and 



B
~

p  are calculated by taking the product of the pattern weights and 

the f(



I j
m) and then summing all possible combinations attached to 



A
~

p  and 



B
~

p .   

4.3 Example Application:  Predicting RHA score 

This section introduces an example application to test the fuzzy GRNN algorithm and 

briefly discuss the results.  Here, fuzzy RGA scores are used as inputs to predict RHA 

scores.  Instead of using two input nodes, like in the previous example, now only one 

input node, the total RGA score, is used.  Three training patterns (Table 4.8) were 

selected from the 20 reaches on the Lewis Creek that had both RGA and RHA scores.  

One reach from each of the habitat conditions (fair, good, and reference) present in the 

Lewis Creek have been selected.  An imprecision of 4 points was added to the total  

Table 4.8: Subset of Lewis Creek reaches used for demonstrating the fuzzy GRNN 

training, only center values of fuzzy number are shown. 

Reach RGA Score (Vertex of 

Fuzzy Number), 



4 

RHA Score (Vertex of 

Fuzzy Number), 



10 

Habitat Condition 

M21A 46 125 fair 

M20B 38 143 good 

M07 71 175 reference 
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RGA score (training weights) and an imprecision of 10 was added to the associated total 

RHA score obtained from the VTANR database 

(https://anrnode.anr.state.vt.us/SGA/default.aspx) to represent what an expert might 

experience in the field.  As a result, the fuzzy numbers created for this example are all 

symmetrical triangular membership functions.  The same assumptions hold for the 

prediction data set; six reaches were randomly selected from the Middlebury River (Table 

4.9), two from each of the habitat conditions present (fair, good, and reference). 

The fuzzy GRNN predictions (Figure 4.5 (asterisks)) are plotted against the expected 

values (solid triangles).  The three Middlebury River predictions that best match the 

expected values are M13A, T3.03, and T3.10.  Comparing the RGA and RHA scores for 

these three reaches to the Lewis Creek training patterns (Table 4.8) shows M13A best 

matches Lewis Creek M20B; T3.03 and T3.10 matches Lewis Creek M07.  As expected, 

when the RGA training weight is similar to a prediction input, but the associated pattern 

weight is not similar to the real RHA score, then the fit is not as good (e.g. Figure 4.5, 

Reach M13B).   

 

Table 4.9:  Middlebury River prediction data set, only center values of fuzzy 

number are shown. 

Reach RGA Score (Vertex of 

Fuzzy Number), 



4 

RHA Score (Vertex of 

Fuzzy Number), 



10 

Habitat Condition 

M01 57 131 good 

M04 39 127 fair 

M13A 38 138 good 

M13B 46 110 fair 

T3.03 70 170 reference 

T3.10 72 176 reference 

 

https://anrnode.anr.state.vt.us/SGA/default.aspx
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Figure 4.5:  Predictions for six reaches in the Middlebury River using the fuzzy 

GRNN. 

 

This example is a first step in demonstrating and testing the applicability of the fuzzy 

GRNN algorithm.  Ideally, one would use a training set larger than 3 patterns, but this 

example was limited due to the computational demand associated with the number of 

calculations necessary to predict a single -cut.  Doubling the number of training patterns 

in this example (from 3 to 6) increases the number of calculations in the division step 

alone from 2
9
 to 2

18
.  Future work includes a larger application using expert defined 

membership functions and operating the code on a faster computer system (e.g. IBM 

Bluemoon cluster machine located at the Vermont Advanced Computing Center). 
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CHAPTER 5                                                                
ASSESSING LINKAGES BETWEEN STREAM 

GEOMORPHIC CONDITION AND HABITAT HEALTH 

USING A GENERALIZED REGRESSION NEURAL 

NETWORK 

5.1 Abstract 

Using physical geomorphic and habitat assessments to assist watershed management 

decisions regarding the biological health of a stream could help reduce cost and time to 

identify stream reaches that are most in need of management help.  However, the 

complex linkages between the physical geomorphic and habitat conditions, and the 

biological health of stream reaches are not fully understood.  In this study, a generalized 

regression neural network (GRNN) is used to explore these nonlinear relationships using 

Vermont streams as a model system.  The GRNN was first used to examine correlations 

between Vermont Agency of Natural Resources (VTANR) River Management Program‟s 

legacy rapid habitat assessment (LRHA) scores from rapid geomorphic assessments 

(RGA) and channel evolution stage data.  The GRNN, trained with 50% of the data set, 

was able to correctly predict 69.9% of the remaining 50% of the (testing) data set 

supporting its use as a tool to further explore relationships involving these variables.  Fish 

and macroinvertebrate biological health assessment data, collected independently by the 

Biomonitoring and Aquatic Studied Section, were then investigated as input data (in 

combination with RGA and channel evolution stage) to predict LRHA.  In another 

analysis, the biological health was used as the output of the GRNN.  The prediction rates 

were better for fish than macroinvertebrate data in both cases; however, when the GRNN 
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was used to predict the biological health, the accuracy of prediction was significantly less 

than when the GRNN was used to predict LRHA.  For the fish data, the prediction 

dropped from a 95.7% match (when predicting LRHA) to 48% (when predicting health) 

and for the macroinvertebrate data the drop was from 82.1% to 23.2%.  A preliminary 

study was conducted using VTANR‟s “new” RHA protocol scores, which began in 2008.  

There was no clear improvement in the prediction rates involving biological health data; 

however, the datasets, to date, are not large enough to be truly representative, and further 

study is warranted.  Ideally, a study involving both the physical and biological 

assessments conducted concurrently could provide a better understanding of the 

mechanisms and complex relationships among them. 

5.2  Introduction 

Identifying streams with high environmental risk and fluvial hazard is essential for a 

proactive adaptive watershed management approach.  Such efforts require environmental 

managers to gather and assess various forms of information - quantitative, qualitative and 

subjective.  The Vermont Agency of Natural Resources (VTANR) River Management 

Program (RMP) has developed and adopted protocols for physical stream geomorphic 

(Kline et al., 2007) and habitat assessments (Schiff et al., 2008) throughout the state of 

Vermont.  Since physical stream processes form the habitat, habitat assessments study 

physical ecological parameters needed to understand the relationship between fluvial 

processes and aquatic communities (VTANR, 2008).  From a management viewpoint, 

these geomorphic and habitat assessments, taken together, may be used to identify 

problem areas and the steps necessary for mitigation (Kline, 2007).   
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Separate from the VTANR River Management Program‟s habitat assessments, the 

Vermont Biomonitoring and Aquatic Studies Section (BASS) is responsible for 

monitoring the biological communities in streams.  Ideally, in cases where the biological 

findings are unexpected, the hope is that the physical geomorphic and habitat reach 

assessments may be used to help understand the findings.  In this work, a least-squares 

regression artificial neural network originally developed by Specht (1991), known as the 

generalized regression neural network (GRNN), is used to explore the nonlinear 

interactions between the physical geomorphic and habitat conditions, and the biological 

metrics collected at the reach-scale to assist watershed managers in making informed 

decisions.  The GRNN, in particular, is an appropriate tool since: (1) the algorithm 

approximates complex, nonlinear relationships, (2) the method is data-driven thus 

allowing for continual updates and refinements as understanding/condition of fluvial 

geomorphology evolves, (3) large quantities of data can easily be passed through the 

algorithm, (4) its least-squares regression methodology is familiar, and (5) unlike more 

well-known regression methods, there is no need to know the best-fit polynomial (e.g. 

linear, quadratic, cubic) prior to data analysis, enabling a truly adaptive management 

approach.  

5.3  Background 

Over the past two centuries, human impacts (e.g. deforestation, channel straightening, 

urbanization) have greatly altered streams in Vermont from their original state (Vermont 

River Management Program, 2009).  The VTANR protocols used to classify stream 

stability (Rapid Geomorphic Assessment – RGA), were developed from a combination of 
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classification systems by Rosgen (1994, 1996), Montgomery and Buffington (1997), 

Schumm (1977), Schumm et al. (1984) and Simon and Hupp (1986).  Stream habitat 

health (i.e. the ability of the stream to sustain life) protocols, originally a modified 

version of the U.S. Environmental Protection Agency‟s Rapid Bioassessment Protocols, 

have been in use since 2002.  Kline and Cahoon (2010) note that data from geomorphic 

and habitat assessments spanning a six-year period indicate almost three-quarters of 

Vermont‟s streams have lost connection with their historical floodplains.  These induced 

changes likely reduce the abundance and diversity of the natural biota (Allan, 2004). 

Several studies have demonstrated a relationship between stream geomorphic 

condition, physical habitat and biological health (Chessman et al., 2006; Sullivan et al., 

2004, 2006; Sullivan and Watzin, 2008).  However, the complex linkages are not well 

understood or easily studied and include many factors such as variation in fish, 

macroinvertebrate, and bird species present, metrics used, and/or spatial and temporal 

measurement scales (Clark et al., 2008; Chessman et al., 2006). 

5.3.1 Generalized Regression Neural Network (GRNN) 

ANNs, in general, are used in pattern classification, pattern completion, function 

approximation, prediction, optimization, and system control applications among others 

(Wasserman, 1993).  Although more than 95% of ANNs used in environmental 

engineering applications have used either a feed-forward back-propagation network or a 

radial basis function neural network (Govindaraju and Ramachandra, 2000), here a 

GRNN is used to explore linkages between geomorphic conditions, physical habitat, and 

biological health for the reasons stated in Section 5.2.  
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The GRNN has extensive applications in the water resources and hydrological fields. 

Aksoy and Dahamsheh (2009) use a GRNN for forecasting monthly precipitation.  

Several studies have had success predicting leaf wetness (Chtioui et al., 1999a; Chtioui et 

al., 1999b) and evapotranspiration (Kim and Kim, 2008; Kisi, 2008a).  Cigizoglu and Alp 

(2004) found the GRNN to be successful in predicting rainfall runoff and, unlike the 

radial basis function and multiple linear regression, did not produce negative flow 

estimations.  Several studies found the GRNN outperformed the feed-forward back-

propagation network when forecasting intermittent stream (Cigizoglu, 2005a) or monthly 

stream flow (Cigizoglu, 2005b; Kisi, 2008b).  Firat (2008) explored its use in daily 

stream flow forecasting, while Ng et al. (2009) estimated missing observations in 

extreme daily stream flow records.  Turan and Yurdusev (2009) predicted stream flow 

from measured upstream flow records, while Besaw et al. (2009a) used a recurrent 

GRNN to predict flow in ungauged streams.  The GRNN has also been used to estimate 

daily mean sea level heights (Sertel et al., 2008), to predict water quality as a function of 

rainfall, surface discharge and nutrient concentration (Kim and Kim, 2007) and to model 

river sediment transport (Cigizoglu and Alp, 2006; Cobaner et al., 2009; Kisi et al., 

2008).  Wang et al. (2009) used the GRNN to model event-based suspended sediment 

concentration in rivers due to tropical storms given turbidity, water discharge, and 

suspended sediment concentrations collected in a weir during storm events over a one-

year time frame. 
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5.4  Stream Assessment Data  

5.4.1 Vermont Stream Geomorphic and Habitat Assessments 

The VTANR developed a three-phase system to perform stream geomorphic 

assessments.  Each successive phase is more detailed and improves the assessor‟s 

certainty about the condition of the reach.  The first phase, remote sensing, uses data 

obtained from topographic maps, aerial photos, previous studies, and from very limited 

field studies.  This type of reach assessment is considered provisional, enabling large 

watersheds (100-150 square miles) to be assessed in a few months.  Using Phase 1 

assessments, ~35% or 8,279 of Vermont‟s ~23,000 stream miles have been assessed to 

date (Kline and Cahoon, 2010).  

The Phase 2, or the rapid field assessment phase, includes the RGA and reach habitat 

assessment (RHA, habitat assessments prior to 2008 are denoted in this work as legacy 

rapid habitat assessments – LRHA) where field data are collected at the stream reach or 

sub-reach scale.  A one-mile reach requires 1 to 2 days to assess; and to date, 6% or 1,371 

stream miles (~2,500 stream reaches) have been assessed at the Phase 2 level (Kline and 

Cahoon, 2010). The geomorphic condition, physical habitat condition, adjustment 

processes, reach sensitivity, and channel evolution stage are determined from quantitative 

and qualitative field evaluation of erosion and depositional processes, changes in 

geometry, and riparian land use/land cover.  Phase 2 assessments identify “at risk” 

reaches and allow reaches to be flagged for protection, restoration, or further Phase 3 

assessment. 
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Phase 3, the survey-level field assessment phase, requires detailed field measurements 

at the sub-reach scale that allow for stream types and adjustment processes to be further 

documented and confirmed.  Quantitaive measurements of channel dimension, pattern, 

profile, and sediments are measured during this level of assessment.  Phase 3 assessments 

require 3 to 4 days on average to survey a sub-reach of two meander wavelengths. 

Data used in this study was obtained from VT Department of Environmental 

Conservation (DEC) and is available at https://anrnode.anr.state.vt.us/SGA/default.aspx.  

All Phase 2 assessments, quality assured by the River Management Program as of August 

2009, that had RGA, LRHA, and channel evolution stage data were selected resulting in 

1292 reaches (Figure 5.1). 

5.4.1.1  VTANR Rapid Geomorphic Assessment (RGA) 

The assessed stream reach condition is based on its perceived departure from 

reference condition.  Reference condition for each reach is inferred based on watershed 

zone, confinement, and valley slope (from Phase 1), as well as, entrenchment, 

width/depth ratio, sinuosity, channel slope, substrate d50, and bed form collected during 

the Phase 2 assessment (Kline et al., 2007).  Quantification of the adjustment processes 

involves assigning a score between 0 (poor) and 20 (reference) for each of the four 

adjustment processes (degradation, aggradation, widening and planform change) resulting 

in a summed total RGA score ranging from 0 to 80.  The overall score is used to classify 

the stream reach as poor, fair, good, or reference condition. 

 

https://anrnode.anr.state.vt.us/SGA/default.aspx
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Figure 5.1:  Map of the state of Vermont showing the Phase 2 reach locations used 

in this study.  Note: only 1006 of the 1292 reaches used here are plotted since the 

remaining reaches were not part of the GIS database at the time this map was 

created.  
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5.4.1.2  VTANR habitat assessment 

Stream habitat assessments examine the physical processes that are key in 

determining aquatic habitat and hence the biota that inhabit it.  These data complement 

biological data and may indicate problems with the biotic health in the reach where the 

biological data alone cannot explain the cause (Schiff et al., 2008).  

Vermont‟s legacy rapid habitat assessments (LRHAs) are slightly modified versions 

of the EPA‟s Rapid Bioassessment Protocols (Barbour et al., 1999).  The LRHAs 

comprise ten parameters that explore physical properties of the channel bed, bank, and 

riparian vegetation (Table 5.1).  Each parameter is scored between 0 (poor) and 20 

(excellent) and then summed to obtain a total score (no greater than 200) categorizing the 

reach as poor, fair, good, or reference.  The LRHAs, implemented through 2007, were 

replaced in 2008 with new reach habitat assessment (RHA) protocols.   

The new RHA was developed to allow for more specific assessment of the various 

stream types found in Vermont and more precise evaluation of the key ecological 

attributes and requirements for aquatic life.  For example, while the LRHA categorized a 

stream as either low or high gradient, the new RHA allows the assessor to select a form 

from 1 of 5 possible stream habitat types: cascade, step-pool, plane bed, riffle-pool, or 

dune-ripple.  The RHA uses only eight parameters (Table 5.1); although like the LRHA, 

each component is scored between 0 to 20 and the total score is used again to categorize 

the stream reach into poor, fair, good, or reference. 

Since the RHA protocol was first implemented in 2008, LRHA data were used to 

show proof of concept due to the availability of data.  The histogram of LRHA scores for 
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Table 5.1:  Parameters that comprise the Vermont RGAs, LRHAs, and RHAs. 

 Condition (Based on total assessment score) 

 Parameters (20 points each) Poor Fair Good Reference 

RGA 

1.   Degradation 

2.   Aggradation 

3.   Widening 

4.   Planform Change 

0 - 27 28 -51 52 - 67 68 - 80 

LRHA 

1.   Epifaunal Substrate/   

      Available Cover  

2.   Embeddedness or Pool  

      Substrate  

3.   Velocity/Depth Patterns or  

      Pool Variability  

4.   Sediment Deposition  

5.   Channel Flow Status  

6.   Channel Alteration  

7.   Frequency of Riffles/Steps  

      or Channel Sinuosity   

8.   Bank Stability (score each  

      bank) 

9.   Bank Vegetative Protection  

      (score each bank)  

10. Riparian Vegetative Zone  

      Width   (score each side of  

      channel 

0 - 68 69 - 128 129 - 168 169 - 200 

RHA 

1.   Woody Debris Cover  

2.   Bed Substrate Cover 

3.   Scour and Depositional  

      Features 

4.   Channel Morphology  

5.   Hydrologic Characteristics 

6.   Connectivity 

7.   River Banks  

8.   Riparian  Area  

0 - 55 56 - 103 104 - 135 136 - 160 

 

the 1292 reaches used in this study is normally distributed (Figure 5.2, p < 0.0579 with a 

Shapiro-Wilkes W test of W = 0.9976), with most of the reach scores falling into fair or 

good habitat condition. 

5.4.2  Biological Assessments 

 The biological health of Vermont streams and rivers is determined by protocols set 

forth by the Vermont Department of Environmental Conservation (VTDEC), within the  
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Figure 5.2:  Histogram of Legacy Rapid Habitat Assessment scores for the 1292 

reaches used in this study.  

 

VTANR.  Metric assessments of fish and macroinvertebrate assemblages are used to 

classify streams based on their departure from reference. To define reference streams for 

the current biomonitoring protocol, VTDEC Biologists from the Biomonitoring and 

Aquatic Studies Section selected macroinvertebrate and fish sites that appeared 

minimally impacted by human activity using data in the VTDEC biological database. 

5.4.2.1 Macroinvertebrate Health 

Combining professional judgment and statistical analyses at the reference sites, four 

categories for macroinvertebrate communities were identified: Small High Gradient 

Streams, Medium High Gradient Streams, Warm Water Moderate Gradient Streams and 

Rivers, and Slow Winders (BASS, 2004).  Since few sites fall into the latter category, 

biocriteria evaluations do not exist at this time for Slow Winders.  Currently, eight 
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metrics are used to assess reaches for macroinvertebrate health (Table 5.2).  Table 5.2 

also provides the metric thresholds for the three stream types and three macroinvertebrate 

community categories (Class A1:  minimal impacts from human activity, Class B1:  

minor changes from reference, and Class B2, B3, and A2:  moderate change from 

reference).  Biomonitoring and Aquatic Studies Section experts assign rankings such as 

Excellent, Very Good, and Good to the above categories (Class A1, B1, and B2, B3, and 

A2, respectively) to capture the stream macroinvertebrate health. If the metrics do not 

satisfy one of these three criteria, the reach is categorized as “Fair” if there is greater than  

Table 5.2: Threshold values for macroinvertebrate assemblages in Vermont 

wadeable streams.  Adapted from BASS (2004).   

 
Small High Gradient 

Streams 

Medium High Gradient 

Streams 

Warm Water Moderate 

Gradient Streams and 

Rivers 

Class Criteria
 Excellent 

 
A1 

Very 

Good 
B1 

Good 
A2, 

B2,B3 

Excellent 
 

A1 

Very 

Good 
B1 

Good 
A2, 

B2,B3 

Excellent 

 

A1 

Very 

Good 
B1 

Good 
A2, 

B2,B3 Metric* 

Richness >35 >31 >27 >43 >39 >30 >40 >35 >30 

Ephemeroptera, 

Plecoptera, 

Trichoptera - 

EPT Index 

>21 >19 >16 >24 >22 >18 >21 >19 >16 

Percent Model 

Affinity of 

Orders - PMA-

O 

>65 >55 >45 >65 >55 >45 >65 >55 >45 

Hilsenhoff 

Biotic Index - 

BI 

<3.00 <3.50 <4.50 <3.50 <4.00 <5.00 <4.25 <4.75 <5.40 

% Oligochaeta <2 <5 <12 <2 <5 <12 <2 <5 <12 

EPT/EPT+ 

Chironomidae 
>0.65 >0.55 >0.40 >0.65 >0.55 >0.40 >0.65 >0.55 >0.40 

Pinkham-

Pearson 

Coefficient of 

Similarity – 

Functional 

Groups - PPCS-

FG 

>0.50 >0.45 >0.40 >0.50 >0.45 >0.40 >0.50 >0.45 >0.40 

Density >500 >400 >300 >500 >400 >300 >500 >400 >300 

* Metric details can be found at http://www.vtwaterquality.org/bass/docs/bs_wadeablestream1a.pdf. 

http://www.vtwaterquality.org/bass/docs/bs_wadeablestream1a.pdf
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moderate change from reference, or “Poor” if there is extreme change.  Reach condition 

metric values falling on the threshold are hyphenated (e.g. Excellent-Very Good, Very 

Good-Good, Good-Fair, and Fair-Poor). 

5.4.2.2 Fish Health 

Fish community health is currently assessed using two Vermont calibrated Indices of 

Biotic Integrity (IBI) (BASS, 2004).  The mixed-water IBI (MW IBI) designation is 

applied to any stream containing five or more native fish species and is comprised of nine 

metrics ranging from a total score of 9 to 45 (Table 5.3).  The second index, the 

Coldwater IBI (CW IBI), applies to smaller coldwater streams that contain two to four 

native species and has six metrics (Table 5.3). 

Biological and geomorphic data were not collected at the exact physical location and 

often not in the same year.  Variation in physical location was accommodated by 

including biological survey data from locations within 200 m of the 1292 locations with 

Phase 2 assessments in this analysis resulting in 46 reaches for fish data and 133 for 

macroinvertebrate data.  To retain sufficient sample sizes, no data were excluded due to 

differences in the time of the biological and geomorphic assessments.  When biological 

assessments were performed over multiple years at the same reach location, the most 

recent assessment was used. 
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Table 5.3: Fish MWIBI and CWIBI score thresholds for associated Water Quality 

Classes and Water Management Types.  Adapted from BASS (2004).     

(
*

) 
Excellent corresponds to Class A1, Very Good to Class B1, and Good to Class B2,B3, and A2. 

5.5  Methodology 

5.5.1 Generalized Regression Neural Network 

The generalized regression neural network (GRNN) introduced by Donald Specht 

(1991) is a parallel, one-pass network that does not require training like the more popular 

feed-forward backpropagation networks (i.e., the training data are used to set the network 

weights).  The GRNN is distinguished from traditional least-squared regression, in that 

the algorithm does not require a priori knowledge of the best-fit polynomial.  Figure 5.3 

Class Criteria
*
/ 

Excellent Very Good Good Fair Poor 
Metric 

Mixed 

Water 

Index of 

Biotic 

Integrity 

Total number of native 

species 

>41 >37 >33 >25 <25 

Number of intolerant 

species 

Number of benthic 

insectivore species 

Percent as white 

suckers and creek chub 

Percent as generalist 

feeders 

Percent of insectivores 

Percent as top 

carnivores 

Percent with DELT 

anomalies 

Abundance 

Cold 

Water 

Index of 

Biotic 

Integrity 

Number of intolerant 

species 

>42 >36 >33 >26 <26 

Percent coldwater 

species 

Percent generalist 

feeders 

Percent top carnivores 

Brook trout density 

Brook trout length class 

number 
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shows the structure of the GRNN algorithm as applied to the prediction of the LRHA 

scores. The network consists of four nodal layers.  The Input Layer simply passes the n 

user-defined input variables, 



X {xi1,xi2,...,xin}, (equivalent to the independent 

variables associated with traditional regression techniques) to the weights of the second 

network layer.  The training weights, wij, connect the Input Layer to the next layer, the 

Pattern Units layer (e.g. w12 connects input node xi=1 with pattern unit node Ij=2, Figure 

5.3).  Each j
th

 training pattern weight, wij, contains a value (e.g., degradation, aggradation, 

 

 

 

Figure 5.3:  GRNN structure showing the components of the RGA and channel 

evolution stage as inputs used to predict the total Legacy RHA score. 
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widening, planform change, or channel evolution stage) for which there is a 

corresponding output (LRHA score).  These weights are set by the training data and do 

not update as in other artificial neural network (ANN) algorithms.  The corresponding 

training output (LRHA score) is stored in the pattern weights, yj, associated with node A 

of the Summation Units layer.  The Pattern Units layer has one node, I, for each of the j 

training patterns and calculates a distance metric (e.g., the Euclidean distance) between 

all sets of training weights and the current input pattern (Eqn. 5.1): 



I j  (wij  x i
i1

n

 )2 , (5.1) 

where xi refers to the i
th

 input parameter, wij are the i
th

 input variable associated with the 

j
th

 training pattern.  The resulting, Euclidean distance, Ij is passed through an exponential 

activation function (Eqn. 5.2): 



f (I j )  exp
I j

2 2









, (5.2) 

where  is a smoothing parameter explained in greater detail below.   

The third layer, Summation Units, calculates the dot product of the output of the 

Pattern Units (Eqn. 5.2) and, for node A, the corresponding yj training weights.  The 

pattern weights associated with node B are set equal to 1.  Therefore, node B calculates 

the dot product between the output from the Pattern Units and the weights set equal to 1.  

The final output is the result of dividing the nodes in the Summation Units (Eqn. 5.3): 



y
^

(X) 

y j  f (I j)
j



1 f (I j)
j



A

B
   . 

(5.3) 



 100 

Note that , in the f(Ij) term (Eqn. 5.2), is used to optimize the GRNN output and is the 

only parameter that can be changed.  As  approaches zero, the predicted network output, 



y


, tends to overfit the training data.  When  is large, 



y


 is smoothed and assumes the 

value of the sample mean.  For further details the reader is referred to Specht (1991).  The 

GRNN algorithm described in this paper was coded in MATLAB 7.10.0 (R2010a). 

5.6 Results 

Building on previous work by Besaw et al. (2009b), the nonlinear relationships 

between RGA and LRHA were explored using the GRNN.  A scatter plot of the 1292 

expert-assigned RGA and LRHA scores is shown in Figure 5.4 (r
2
 = 0.414, p < 0.05).  

The majority of the poor habitat ranked reaches aligns with either poor or fair RGA 

scores (one exception is a reach with poor LRHA and good RGA).  The fair ranked reach 

habitats overlap all four categories of RGA scores; however, only one (on the dividing 

line between good and fair LRHA) falls in the reference RGA category.  Similarly, the 

good LRHA scores span the entire range of RGA scores with the majority assessed in the 

good and fair categories.  The LRHA reference reaches coincide mostly with the RGA 

reference and good reaches; however, one reach is categorized with a reference LRHA 

and a fair RGA. 

A summary of the GRNN trials conducted in this study to link geomorphology 

(RGA) to habitat (LRHA and RHA) is provided in Table 5.4.  Figure 5.5 (a) shows the 

comparison of the GRNN predicted LRHA (trial LRHA1, Table 5.4) against the expert 

assigned LRHA.  Fifty percent of reaches from each LRHA category were selected 
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Figure 5.4:  Correlation between RGA and LRHA scores. The vertical lines mark 

divisions between categories of poor (0-27), fair (28-51), good (52-67), and reference 

(68-80) for RGA scores.  The dashed horizontal lines show the category endpoints 

for LRHA scores, poor (0-68), fair (69-128), good (129-168), and reference (169-200). 

 

randomly to construct the training set.  The remaining 50% are used for 

testing/prediction.  Figure 5.5 (b) displays the categorical (total LRHA score post-

processed into categories) GRNN predictions (LRHA1) against the categorical expert-

assigned LRHA score.  The GRNN was able to correctly predict 69.9% (195 

misclassified out of 647) of the data in the prediction set compared to a 66.8% match 

(215 misclassified out of 647) using traditional multiple linear regression.  The boxes 

highlighted along the diagonal show correctly classified predictions.  Thirteen stream 

reaches categorized as poor by VTANR experts were categorized as fair by the GRNN  
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Table 5.4:  Summary of GRNN trials including inputs, outputs and outcome 

predicted correctly. 

Type of Data 

Trial 

ID 
GRNN Inputs 

(*)
 

GRNN 

Output 

Correctly 

Classified

/Total 

% 

Match 

Original 1292 

Reaches 

LRHA1 Deg., Agg., Wid, PC,  

Channel Evolution 

Total LRHA  452/647 69.9 

LRHA2 Deg., Agg., Wid, PC Total LRHA  445/647 68.6 

Fish Subset of 

LRHA Data 

(46 reaches) 

LRHA3 Deg., Agg., Wid, PC,  

Channel Evolution 

Total LRHA  22/23 95.7 

LRHA4 Deg., Agg., Wid, PC,  

Channel Evolution, Fish Health 

Total LRHA  22/23 95.7 

FISH1 Deg., Agg., Wid, PC, 

 Channel Evolution, Total LRHA  

Fish Health 12/25 48.0 

FISH2 Deg., Agg., Wid, PC,  

Channel Evolution  

(NO LRHA) 

Fish Health 10/25 40.0 

Macro-

invertebrate 

Subset of 

LRHA Data 

(133 reaches) 

LRHA5 Deg., Agg., Wid, PC,  

Channel Evolution 

Total LRHA  56/67 83.6 

LRHA6 Deg., Agg., Wid, PC,  

Channel Evolution, 

Macroinvertebrate Health 

Total LRHA  55/67 82.1 

MAC1 Deg., Agg., Wid, PC,  

Channel Evolution, Total LRHA  

Macro-

invertebrate 

Health 

16/69 23.2 

MAC2 Deg., Agg., Wid, PC,  

Channel Evolution (NO LRHA) 

Macro-

invertebrate 

Health 

15/69 21.7 

Fish Subset of 

New RHA 

Data  

(13 reaches) 

RHA1 Deg., Agg., Wid, PC,  

Channel Evolution 

Total RHA  5/7 71.4 

RHA2 Deg., Agg., Wid, PC,  

Channel Evolution, Fish Health 

Total RHA  5/7 71.4 

FISH3 Deg., Agg., Wid, PC,  

Channel Evolution, Total RHA  

Fish Health 3/6 50 

FISH4 Deg., Agg., Wid, PC,  

Channel Evolution (NO RHA) 

Fish Health 4/6 66.7 

Macro-

invertebrate 

Subset of 

New RHA 

Data 

(36 reaches) 

RHA3 Deg., Agg., Wid, PC,  

Channel Evolution 

Total RHA  16/19 84.2 

RHA4 Deg., Agg., Wid, PC,  

Channel Evolution, 

Macroinvertebrate Health 

Total RHA  16/19 84.2 

MAC3 Deg., Agg., Wid, PC,  

Channel Evolution, Total RHA  

Macro-

invertebrate 

Health 

7/19 26.3 

MAC4 Deg., Agg., Wid, PC,  

Channel Evolution (NO RHA) 

Macro-

invertebrate 

Health 

4/19 21.1 

(*)
Deg. = Degradation; Agg. = Aggradation; Wid. = Widening; PC = Planform Change 
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                                                (b) Expert Assigned RHA Category (69.9% match) 

                                                        poor                  fair                good             reference 

GRNN 

Predicted 

Category 

poor 0 2 1 0 

fair 13 303 98 1 

good 1 58 134 14 

reference 0 0 7 15 

Figure 5.5: (a) Results of GRNN predicted LRHA using degradation, aggradation, 

widening, planform change, and channel evolution stage as inputs to the algorithm 

(trial LRHA1, Table 5.4) plotted against the expert assigned total RHA score. (b) 

Frequency of predictions after output is categorized.  

 

and one reach was estimated as good.  In addition, only 15 of the reference stream 

reaches were correctly classified; while 14 were predicted as good and 1 as fair.  

Figure 5.6 (a) shows some correlation between the VTANR Biomonitoring and 

Aquatic Studies Section assigned fish health (plotted along horizontal axes) and the River 

Management Program LRHA (r
2
 = 0.053, p > 0.05), but less correlation with RGA scores 

(r
2
 = 0.0002, p > 0.05 - Figure 5.6 (b)).  Figures 5.6 (c) and (d) show no obvious trend for 
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Figure 5.6: Plot showing biological health versus RHA and RGA.  Results for fish at 

46 VT stream reaches are shown in (a) and (b). Results for macroinvertebrates at 

133 VT stream reaches are shown in (c) and (d). 
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macroinvertebrate health plotted against RHA (r
2
 = 0.0004, p > 0.05) and RGA (r

2
 = 

0.0026, p > 0.05).  

In selecting the fish training data, only one poor LRHA reach and 2 reference reaches 

existed in the data set.  As a result, this single poor reach and one reference reach, were 

placed into the training set, then 50% of the data in each of the other LRHA categories 

were randomly selected for training; while the remainder were held back for 

testing/prediction.  The macroinvertebrate data set had one poor and one reference 

LRHA reach.  Both the poor and reference reaches were included in the training set along 

with 50% of each of the other conditions; the remaining reaches were used for prediction.  

 When considering the fish data set and its relationship to LRHA prediction, the 

GRNN was able to correctly predict 22 of the 23 reaches (a 95.7% match, Table 5.4, trial 

LRHA3).  Adding the fish health assessment data as a sixth input (Table 5.4, trial 

LRHA4) did not impact the results.  The one misclassified reach was a fair reach that the 

GRNN predicted as good (Table 5.5 (a)).  For the macroinvertebrate data, when only the 

geomorphic data was used as inputs to predict the LRHA (Table 5.4, Trial LRHA5), the 

GRNN classified 56 out of 67 correctly (or 83.6% match).  Interestingly, when the 

macroinvertebrate health assessment data was added as an input (Table 5.4, trial 

LRHA6), the GRNN correctly classified one less reach (55 out of 67, Table 5.5 (b)). 

 The trials that are, perhaps, more interesting from a management standpoint, are 

FISH1, FISH2, MAC1, and MAC2 (Table 5.4) where the GRNN is used to predict 

biological health for fish and macroinvertebrates, respectively.  This is because rapid 

assessment tools have the potential to identify reaches in need of more detailed fish or 

macroinvertebrate field assessments.  The prediction capabilities of the GRNN are much  
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Table 5.5: Results of GRNN prediction using (a) fish biological health and (b) 

macroinvertebrate health as the sixth input parameter. 

                                                             (a) Expert Assigned RHA Category (95.7% match) 

                                                                   poor                fair                 good            reference 

GRNN Predicted 

Category (Using 

Fish Data) 

poor 0 0 0 0 

fair 0 13 0 0 

good 0 1 8 0 

reference 0 0 0 1 

 

                                                            (b) Expert Assigned RHA Category (82.1% match) 

                                                                   poor                fair                 good            reference 

GRNN Predicted 

Category (Using 

Macroinvertebrate 

Data) 

poor 0 0 0 0 

fair 0 39 6 0 

good 0 5 16 1 

reference 0 0 0 0 

 

lower when predicting biological health than when predicting LRHA scores (Table 5.4: 

95.7% match for LRHA3 versus 40% match for FISH2 and 83.6% match for LRHA5 

versus 21.7% match for MAC2).  Including the total LRHA score as an input improved 

the biological health predictions slightly (Table 5.4: 48% match for FISH1 versus 40% 

match for FISH2 and 23.2% match for MAC1 versus 21.7% match for MAC2).  The 

prediction rate for fish health is higher (FISH1) than that for macroinvertebrate health 

(MAC1) as the rate decreases from 48.0% to 23.2%, respectively. 

Although it was not a goal of this paper to explore the relationship(s) between the 

new RHA protocols, RGA, and biological health, the new RHA data available as of July 

21, 2010 were used in a preliminary analysis.  Since the new RHA protocols were 

designed to better assess the key ecological parameters that affect habitat in Vermont 

streams, the hope is that a better correlation will exist between the physical and biological 

conditions.  Eight trials (Table 5.4) show the results of various GRNN predictions.   
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Note that there are significantly fewer reaches with both biological and physical 

geomorphic and habitat assessments (n = 13 in the fish subset and n = 36 in the 

macroinvertebrate subset).  Neither subset provided full representation of the possible 

conditions that exist in Vermont.  All RHA scores contained reaches ranked either fair or 

good; there were no poor or reference reaches.  Also, the fish health conditions had one 

Poor, no Fair, 3 Good, 8 Very Good, and one Reference reach.  The macroinvertebrate 

health conditions only represented the Good-Fair, Good, Very Good-Good, Very Good, 

Excellent-Very Good, and Excellent categories; no Poor, Fair-Poor, or Fair reaches yet 

exist in the dataset.  Training and prediction sets were created in a similar manner as 

other trials.   

Predicting the RHA score using the fish data set (n = 13) produced a 71.4% percent 

match (Table 5.4, trial RHA1).  Adding the fish health assessment for the reaches as an 

input (Table 5.4, trial RHA2) produced the same results.  These are not as strong as 

predictions using the LRHA data (trials LRHA3 and LRHA4); however, again the 

addition of the fish health as an input did not improve the prediction rate.  When the fish 

health was predicted, compared to the LRHA dataset (FISH1 and FISH2), the prediction 

rates are slightly better (FISH3 and FISH4).  Interestingly, the GRNN was able to predict 

one more reach health condition correctly when the RHA score was removed as an input 

parameter (FISH3 had a match of 50% and FISH4 had a match of 66.7%).    

Predictions of the new RHA using macroinvertebrate health (Table 5.4, trials RHA3 

and RHA4) were similar to predictions obtained for LRHA (trials LRHA5 and LRHA6).  

As in the fish case, there was no change in prediction when biological health was added 

as an input (RHA3 and RHA4).  When the GRNN was used to predict the 
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macroinvertebrate health using the new RHA scores as input parameters (trial MAC3), 

the prediction rate improved slightly from using the LRHA (MAC1); however, the rates 

are still much lower than the fish predictions.  

5.7 Discussion 

The results of trial LRHA1 (Figure 5.5 (b)) show that the GRNN was unable to 

predict poor stream reaches.   One possible explanation is that of the 14 poor LRHA 

reaches, only 3 of the data patterns are associated with a poor RGA score.  Therefore, if a 

prediction input pattern (degradation, aggradation, widening, planform change, and 

channel evolution) in the LRHA1 trial is similar to a training reach with fair RGA and 

RHA condition, the GRNN output will be fair.  Another possibility is that since the 

LRHA is more subjective than the RGA, there is information (in the expert‟s neural 

networks) that is currently not being used in the GRNN (e.g. water quality information).  

Also, the optimal boundaries for the habitat categories were originally selected prior to 

data collection.  Now that VTANR has a large and growing data set, the category 

boundaries could be optimized.  Besaw et al. (2009b) showed that VTANR current 

stream sensitivity classification may need to be adjusted based on analysis of RGA and 

stream inherent vulnerability.  

The lack of strong linear correlations in Figures 5.6 (a) and (b) are not unexpected as 

the complexities between the physical geomorphic and habitat conditions, and biological 

health are not completely understood and are compounded by scale incompatibilities, 

species present, and metrics used (Clark et al., 2008; Chessman et al., 2006).  Adding 

fish health as an additional input to the GRNN (trial LRHA4), did not improve the 
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prediction of the LRHA scores (95.7% for both LRHA3 and LRHA4).  Also, in the case 

of the macroinvertebrates, adding the health as an input (trial LRHA6) actually decreases 

the prediction rate of the LRHA score (from 83.6% for trial LRHA5 to 82.1% for trial 

LRHA6).  It‟s possible that this is the result of a smaller sample size than the original 

data set (n = 46 for fish and 133 for macroinvertebrates) and therefore, not truly 

representative of the relationships between the physical and biological conditions.  It was 

suggested that weighting embeddedness more heavily for the macroinvertebrate health 

trial MAC1 might improve the prediction results.  This was tested by adding the 

embeddedness score of the LRHA as an additional input, however, after weighting 

embeddedness up to six times (making up 50% of the other inputs), the GRNN was only 

able to correctly predict one more reach than when embeddedness was not included. 

In addition, experts with different backgrounds collected the physical (RGA, LRHA, 

and RHA) and biological health assessments used in this study at separate times (in some 

cases spanning several years) and at different spatial scales.  While it is important for 

these assessments to be conducted independently to prevent biased results, temporal gaps 

of several years can result in a loss of information (relationships) that may have existed.  

Geomorphic reach assessments are conducted with the intent of capturing the best 

representation of the reach as a whole.  Biological assessments tend to be more specific to 

certain locations within a reach based on sampling preferences.  This sampling scale 

incompatibility may hinder the discovery of linkages between the physical and biological 

assessments (Clark et al., 2008).  The fact that the GRNN was able to predict fish health 

better than macroinvertebrate health (Table 5.4: FISH1, FISH2, FISH3, and FISH4 

versus MAC1, MAC2, MAC3, and MAC4) may demonstrate that the fish assessments 
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are conducted on a scale more similar to that of habitat assessments (LRHA and RHA) 

than the macroinvertebrate assessments.  Another possibility noted by King and Baker 

(2010) is that some community metrics used to determine the fish and macroinvertebrate 

biological health (richness, Index of Biotic Integrity used in this study) may allow for a 

loss of important information.  They show the community metrics may be insensitive to 

changes in individual taxa or populations.  Knowing which taxa respond to stressors in 

the environment can assist in understanding the mechanisms behind the changing habitat 

and assist managers in making appropriate remediation decisions. 

Although no drastic improvement in the prediction rates occurred when the new RHA 

data were used versus the legacy RHA data in the cases using biological health, given the 

small sample size and lack of data spanning all categories, no definitive conclusions can 

be drawn about whether the new RHA captures habitat health better than the LRHA.  The 

results do, however, stimulate curiosity for further study. 

5.8 Conclusions 

The idea that physical habitat conditions would influence the biological health of a 

stream seems obvious; however, understanding this relationship proves to be a 

challenging task.  The results in this work show that drawing clear linkages in such 

systems is not obvious.  The GRNN, however, does appear to be useful in exploring these 

complex relationships in Vermont stream reaches.  The algorithm is a generalized 

regression algorithm and as such will provide comparable predictions to traditional 

generalized regression provided the function the data best fit is known; however, a key 

advantage of the GRNN is that one does not need to know the order of the best-fit 
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polynomial a priori.  For this study, the GRNN was, therefore, easier to implement.  The 

algorithm also allows for continual update and refinement as more data becomes 

available.   

One possible conclusion that can be drawn is that since the fish data have better 

prediction rates than the macroinvertebrates in almost all the cases studied here, the 

LRHA and RHA are better at indicating habitat conditions for fish.  Ideally, however, a 

more detailed study with additional physical and biological assessments conducted in 

tandem may help resolve the complex temporal, spatial, and assessment metric issues.   

5.9 Acknowledgements 

Funding for this research was supported by VT EPSCoR Grant NSF EPS #0701410.   

 

5.10 References 

Aksoy, H., and Dahamsheh, A., 2009.  Artificial neural network models for forecasting 

monthly precipitation in Jordan. Stochastic Environmental Research and Risk 

Assessment, 23(7): 917–931. 

 

Allan, J. D., 2004.  Landscapes and riverscapes: The influence of land use on stream 

ecosystems.  Annual Review of Ecology, Evolution and Systematics, 35: 257–284. 

 

Barbour, M. T., Gerritsen, J., Snyder, B. D., and Stribling, J. B., 1999. Rapid 

Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, 

Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. 

Environmental Protection Agency; Office of Water; Washington, D.C. 

 

BASS (Biomonitoring and Aquatic Studies Section). 2004.  Biocriteria for fish and 

macroinvertebrate assemblages in Vermont wadeable streams and rivers: Executive 

Summary. Vermont Agency of Natural Resources, Waterbury, VT. 

 

Besaw, L. E., Rizzo, D. M., Bierman, P. R., and Hackett, W., 2009a. Advances in 

ungauged streamflow prediction using artificial neural networks. Journal of 

Hydrology, 386(1-4): 27-37. 

 



 112 

Besaw, L. E., Rizzo, D. M., Kline, M., Underwood, K. L., Doris, J. J., Morrissey L. A.,  

 and Pelletier, K., 2009b. Stream classification using hierarchical artificial neural 

networks: A fluvial hazard management tool.  Journal of Hydrology, 373(1-2): 34-

43. 

 

Chessman, B. C., Fryirs, K. A., and Brierley, G. J., 2006.  Linking geomorphic character,  

 behaviour and condition to fluvial biodiversity: implications for river management. 

Aquatic Conservation: Marine and Freshwater Ecosystems, 16: 267–288. 

 

Chtioui, Y., Franci, L., Panigrahi, S., 1999a.  Moisture prediction from simple 

micrometeorological data. Phytopathology, 89(3): 668-672. 

 

Chtioui, Y., Panigrahi, S., Franci, L., 1999b.  A generalized regression neural network 

and its application for leaf wetness prediction to forecast plant disease. 

Chemometrics and Intelligent Laboratory Systems, 48 (1): 47-58. 

 

Cigizoglu, H. K., 2005a.  Application of generalized regression neural networks to 

intermittent flow forecasting and estimation.  Journal of Hydrologic Engineering, 

10(4): 336-341. 

 

Cigizoglu, H. K., 2005b.  Generalized regression neural network in monthly flow 

forecasting.  Civil Engineering and Environmental Systems, 22(2): 71-84. 

 

Cigizoglu, H. K. and Alp, M., 2004.  Rainfall-runoff modelling using three neural 

network methods.  Lecture Notes in Artificial Intelligence, 3070: 166-171. 

 

Cigizoglu, H. K. and Alp, M., 2006.  Generalized regression neural network in modelling  

 river sediment yield.  Advances in Engineering Software, 37(2): 63-68.  

 

Clark, J. S., Rizzo, D. M., Watzin, M. C., and Hession, W. C., 2008.  Spatial distribution  

 and geomorphic condition of fish habitat in streams: An analysis using hydraulic 

modeling and geostatistics.  River Research and Applications, 24: 885-899. 

 

Cobaner, M., Unal, B., Kisi, O., 2009.  Suspended sediment concentration estimation by 

an adaptive neuro-fuzzy and neural network approaches using hydro-

meteorological data.  Journal of Hydrology, 367 (1-2): 52-61. 

 

Firat, M., 2008.  Comparison of artificial intelligence techniques for river flow 

forecasting.  Hydrology and Earth System Sciences, 12(1): 123-139. 

 

Govindaraju, R. S. and Ramachandra, R. A., 2000.  Artificial Neural Networks in 

Hydrology.  Kluwer Academic Publishers, Dordrecht, The Netherlands. 

 

Kim, M. Y. and Kim, M. K., 2007.  Dynamics of surface runoff and its influence on the 

water quality using competitive algorithms in artificial neural networks.  Journal of 



 113 

Environmental Science and Health Part A-Toxic/Hazardous Substances & 

Environmental Engineering, 42(8): 1057-1064. 

Kim, S. and Kim, H. S., 2008.  Neural networks and genetic algorithm approach for  

nonlinear evaporation and evapotranspiration modeling.  Journal of Hydrology, 

351(3-4): 299-317. 

 

King, R. S., and Baker, M. E., 2010. Considerations for analyzing ecological community  

 thresholds in response to anthropogenic environmental gradients.  Journal of the 

North American Benthological Society, 29(3): 998–1008. 

 

Kisi, O., 2008a. The potential of different ANN techniques in evapotranspiration 

modeling.  Hydrological Processes, 22(14): 2449–2460. 

 

Kisi, O., 2008b.  River flow forecasting and estimation using different artificial neural 

network techniques.  Hydrology Research, 39(1): 27-40. 

 

Kisi, O., Yuksel, I. and Dogan, E., 2008.  Modelling daily suspended sediment of rivers 

in Turkey using several data-driven techniques.  Hydrological Sciences Journal-

Journal Des Sciences Hydrologiques, 53(6): 1270-1285. 

 

Kline, M., 2007.  Draft Vermont Agency of Natural Resources River Corridor Planning 

Guide to Identify and Develop River Corridor Protection and Restoration Projects.  

Vermont River Management Program, Waterbury, VT. 

 

Kline, M. and Cahoon, B., 2010. Protecting river corridors in Vermont.  Journal of the 

American Water Resources Association (JAWRA), 46(2):227-236. 

 

Kline, M., Alexander, C., Pytlik, S., Jaquith, S. and Pomeroy, S., 2007. Vermont Stream 

Geomorphic Assessment Protocol Handbooks. Vermont Agency of Natural 

Resources, Waterbury, Vermont. http://www.vtwaterquality.org/rivers/htm.  

 

Montgomery, D. R. and Buffington, J. M., 1997.  Channel-reach morphology in mountain 

drainage basins.  Geological Society of America Bulletin, 109(5): 596-611. 

 

Ng, W. W., Panu, U. S., and Lennox, W. C., 2009.  Comparative studies in problems of 

missing extreme daily streamflow records.  Journal of Hydrologic Engineering, 

14(1): 91-100. 

 

Rosgen, D.L., 1994.  A classification of natural rivers.  Catena, 22:169-199. 

 

Rosgen, D. L. and Silvey, H. L., 1996.  Applied River Morphology.  Wildland Hydrology 

Books, Pagosa Springs, Colorado, USA. 325 pp. 

 

Schiff, R., Kline, M., and Clark, J., 2008. The Reach Habitat Assessment Protocol. 

Prepared by Milone and MacBroom, Inc. for the Vermont Agency of Natural 



 114 

Resources, Waterbury, Vermont. 

Schumm, S. A., 1977. The Fluvial System. Wiley-Interscience, New York, N.Y., 338 pp. 

 

Schumm, S. A., Harvey, M. D., and Watson, C. C., 1984. Incised Channels: Morphology, 

Dynamics and Control. Water Resources Publications, Littleton, Co. 200. pp. 

 

Sertel, E., Cigizoglu, H. K. and Sanli, D. U., 2008. Estimating daily mean sea level 

heights using artificial neural networks.  Journal of Coastal Research, 24(3): 727-

734. 

 

Simon, A. and Hupp, C. R., 1986.  Channel evolution in modified Tennessee channels, 

Proceedings, Fourth Federal Interagency Sedimentation Conference, Las Vegas, 

2(5): 71-82. 

 

Specht, D.F., 1991.  A general regression neural network.  IEEE Transactions on Neural 

Networks, 2(6): 568-576. 

 

Sullivan, S. M. P, and Watzin, M. C., 2008.  Relating stream physical habitat condition 

and concordance of biotic productivity across multiple taxa.  Canadian Journal of 

Fisheries and Aquatic Sciences, 65: 2667-2677. 

 

Sullivan, S. M. P, Watzin, M. C., and Hession, W. C., 2004.  Understanding stream 

geomorphic state in relation to ecological integrity: evidence using habitat 

assessments and macroinvertebrates.  Environmental Management, 34(5), 669-683. 

 

Sullivan, S. M. P., Watzin, M. C., and Hession, W. C., 2006.  Influence of stream 

geomorphic condition on fish communities in Vermont, U.S.A.  Freshwater 

Biology, 51: 1811–1826. 

 

Turan, M., Yurdusev, M., 2009.  River flow estimation from upstream flow records by 

artificial intelligence methods.  Journal of Hydrology, 369: 71–77. 

 

Wang, Y. M., Kerh, T., Traore, S., 2009.  Neural networks approaches for modeling river  

 suspended sediment concentration due to tropical storms.  Global NEST Journal, 

11(4): 457-466. 

 

Wasserman, P. D., 1993. Advanced Methods in Neural Computing. Van Nostrand 

Reinhold, New York, N. Y. 

 

Vermont River Management Program, 2009.  Data Management System (DMS), 

Corridor Plans, and ArcGIS Tool: Vermont Stream Geomorphic and Habitat 

Assessment Data, Map Serve, and River Corridor Plans and Delineation Tools. 

Vermont Agency of Natural Resources, Waterbury, Vermont. 

http://www.vtwaterquality.org/rivers/htm. 

 

http://www.vtwaterquality.org/rivers/htm


 115 

 

CHAPTER 6:                                                       

CONCLUSIONS 

 

In this work, fuzzy set theory and generalized regression neural networks are applied 

and modified as necessary to address groundwater and watershed management problems.  

Given the applications in this dissertation, the non-traditional analysis methods used 

(Dempster-Shafer Theory, fuzzy least-squares regression, and GRNNs) prove to perform 

as well or better than more traditional methods and warrant consideration for appropriate 

future applications. 

 In Chapter 2, uncertainty information from two permeability experts and three 

measurement techniques are combined using various combination rules under Dempster-

Shafer theory.  First, measurement uncertainty bounds associated with pump-test, drill-

stem, or core data were obtained independently from experts.  The uncertainty was 

applied to the data and combined using Dempster‟s rule of combination, Yager‟s rule, 

and the Hau-Kashyap method.  The latter two methods were compared to the previously 

criticized Dempster‟s rule of combination.  Since the conflict amongst the experts was 

realtively low, the three methods yield similar results, however it was clear how high 

levels of conflict could produce results that are not as meaningful.   

In Chapter 3, fuzzy least-squares regression was used in place of ordinary linear least-

squares regression in the Cooper-Jacob method.  A modified version of the fuzzy least-

squares regression was created to remove one of the fundamental problems with the 

existing methods: if crisp numbers were used in the algorithm, the results were not the 

same as ordinary least-squares regression.  Our modified version corrected that issue.  
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The fuzzy least-squares regression was then used to calculate fuzzy slope and intercept 

values that were then used in the Cooper-Jacob equation.  The Cooper-Jacob equation 

was solved using the Extension Principle to produce membership functions for storativity 

and transmissivity.  The vertex values of the membership functions compared well to the 

results of the traditional analysis technique (i.e. using ordinary linear least-squares 

regression).  Using the modified fuzzy least-squares regression to solve for transmissivity 

and storativity allows for incorporation of uncertainty that is typically not used and, 

therefore, a better understanding of the heterogeneous subsurface results. 

In Chapter 4, the GRNN algorithm was modified to allow for the use of fuzzy 

numbers as input and training data.  The Vertex Method was used to alter the equations in 

the algorithm to approximate the Extension Principle.  The motivation behind the 

development of the fuzzy GRNN was to capture imprecision in experts assessments of 

stream reach geomorphic and physical habitat condition in Vermont, while linkages 

between the two are explored.  The fuzzy GRNN algorithm was tested using a small 

subset of Vermont stream reach physical geomorphic and habitat data.  The results are 

promising in capturing expert imprecision and the ability to better define stream reach 

habitat condition; however, due to the computational demand of the algorithm, a larger 

application needs to be conducted on a more powerful computing system to test this 

theory further. 

In Chapter 5, a GRNN was used to explore linkages between physical habitat and 

geomorphic conditions and biological health using fish and macroinvertebrate 

assessments throughout the state of Vermont.  Initially, a study of 1292 reaches with 

geomorphic assessments was used to predict habitat conditions (based on legacy habitat 
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assessments).  The algorithm provides comparable predictions to generalized regression; 

however, a key advantage of the GRNN is that one does not need to know the order of 

the best-fit polynomial a priori.  For this study, the GRNN was, therefore, easier to 

implement.  The algorithm also allows for easy manipulation of data as more becomes 

available and, as more is learned, input parameters can be quickly added or removed and 

new results obtained.  The results of the GRNN trials support that drawing clear linkages 

between the systems is not obvious.  The GRNN, however, appears to be viable tool to 

explore these complex relationships in Vermont stream reaches.  Further study with 

larger data sets and use of the new habitat protocols are needed to further understand the 

complex relationships between the physical and biological health conditions. 
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APPENDIX A: FUZZY GRNN CODE 

 
%This code is a GRNN that allows the inputs to be fuzzy 

numbers, the output is a fuzzy number as well 

%Bree Mathon 

%5/6/10 

%Last modified 10/20/10 

 

%Functions called: Discretize() and DiscretizeY()  

tic; 

clear all 

close all 

clc 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Read in training and testing data 

  

NumInPar=4; 

  

[XTrain]=xlsread('ExampleXTrain090510'); 

[YTrain]=xlsread('ExampleYTrain'); 

[XPredict]=xlsread('ExampleXPredict'); 

[YRealScore]=xlsread('ExampleYPredict'); 

  

sigsq=0.5; 

ScoreTotal=40; 

  

[RowsTrain,ColsTrain]=size(XTrain); 

[RowsPredict,ColsPredict]=size(XPredict); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Discretize the inputs 

y=[0 1 0]; 

%alphaLt=[0,0.25,0.5,0.75,1]; 

alphaLt=[0,0.25,0.5,0.75,1]; 

%alphaRt=[1,0.75,0.5,0.25,0]; 

XTrainDis=Discretize(XTrain,y,alphaLt); 

  %XTrainDis=XTrainDis(1,:); 

XPredictDis=Discretize(XPredict,y,alphaLt); 

  %XPredictDis=XPredictDis(1,:); 

YTrainDis=DiscretizeY(YTrain,y,alphaLt); 

  %YTrainDis=YTrainDis(1,:); 

[RowsTrainDis,ColsTrainDis]=size(XTrainDis); 



 130 

[RowsPredictDis,ColsPredictDis]=size(XPredictDis); 

[RowsTrainYDis,ColsTrainYDis]=size(YTrainDis); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%cycle through the calculations one alpha cut at a time   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for ii=1:length(alphaLt) 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                %Assign the weights 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    %Training weights 

    W1=XTrainDis(ii,:); 

    [RW1,CW1]=size(W1); 

    %Pattern weights 

    WA=YTrainDis(ii,:); 

    [RWA,CWA]=size(WA); 

    %Weights connected to Node B 

    WB=ones(1,ColsTrainYDis); 

    [RWB,CWB]=size(WB); 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                %Calculate pattern units 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    prod=RowsPredict*2; 

  

 n=0; %used to keep track of spot in XPredictDis so we    

      can pull out the current prediction set 

    tt=0; 

    for i=1:RowsPredict 

        Predict=[XPredictDis(ii,i+n:i+n+1)];... 

            %XPredictDis(ii,(i+n+prod):(i+n+prod+1))];... 

            %XPredictDis(ii,(i+n+2*prod):(i+n+2*prod+1))... 

            %XPredictDis(ii,(i+n+3*prod):(i+n+3*prod+1))]; 

%Calls in left and right bounds for prediction input one 

alpha cut at a time, currently written to accommodate four 

input variables/comment or uncomment to accommodate number 

of variables 

     

  n=n+1; 

        [RowPred,ColPred]=size(Predict); 

%         for j=0:ColPred/2-1 

%             leftPred(1,1)=1; 

%             leftPred(1,j+1)=2*j+1; 



 131 

%         end 

%         for j=1:ColPred/2 

%             %rt(1,1)=2; 

%             rtPred(1,j)=2*j; 

%         end 

        m=1; 

        %%%%%Create degradation, aggradation, widening, and  

 planform change matrices%%%%%%%%%%%                

        for j=1:2*RowsTrain 

            Deg(1,j)=W1(1,j); 

        end 

        v=1; 

%       for j=2*RowsTrain+1:4*RowsTrain 

%           Agg(1,v)=W1(1,j); 

%           v=v+1; 

%       end 

        v=1; 

%       for j=4*RowsTrain+1:6*RowsTrain 

%           Wid(1,v)=W1(ii,j); 

%           v=v+1; 

%       end 

%       v=1; 

%       for j=6*RowsTrain+1:8*RowsTrain 

%           PC(1,v)=W1(ii,j); 

%           v=v+1; 

%       end 

     

%%%%%%%%  BEGIN TO CALCULATE PATTERN UNIT NODES  %%%%%%%%% 

%%% Calculate the distance matrices for each parameter %%% 

    %for j=1:RW1 

        s=0; 

         

        for k=1:RowsTrain 

            m=1; 

%             I(k,m)=abs(Predict(1,1));              

%             TempI(j,k+s)=min(DistSumI(j,:)); 

%             TempI(j,k+s+1)=max(DistSumI(j,:)); 

   %%%%%%%%%%%%%%%%% L1 Norm %%%%%%%%%%%%%%%%%%% 

     %%%%%%% Uncomment for one input %%%%%%%%%%%%% 

%             DistDeg(k,1)=abs(Predict(1,1)-Deg(1,k+s)); 

%             DistDeg(k,2)=abs(Predict(1,2)-Deg(1,k+s+1)); 

%             DistDeg(k,3)=abs(Predict(1,1)-Deg(1,k+s+1)); 

%             DistDeg(k,4)=abs(Predict(1,2)-Deg(1,k+s)); 

     %%%%%%% Uncomment for two inputs %%%%%%%%%%%% 
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%             DistAgg(k,1)=abs(Predict(1,3)-Agg(1,k+s)); 

%             DistAgg(k,2)=abs(Predict(1,4)-Agg(1,k+s+1)); 

%             DistAgg(k,3)=abs(Predict(1,3)-Agg(1,k+s+1)); 

%             DistAgg(k,4)=abs(Predict(1,4)-Agg(1,k+s)); 

     %%%%%%% Uncomment for three inputs %%%%%%%%%% 

%             DistWid(k,1)=abs(Predict(1,5)-Wid(1,k+s)); 

%             DistWid(k,2)=abs(Predict(1,6)-Wid(1,k+s+1)); 

%             DistWid(k,3)=abs(Predict(1,5)-Wid(1,k+s+1)); 

%             DistWid(k,4)=abs(Predict(1,6)-Wid(1,k+s)); 

     %%%%%%% Uncomment for four inputs %%%%%%%%%%% 

%             DistPC(k,1)=abs(Predict(1,7)-PC(1,k+s)); 

%             DistPC(k,2)=abs(Predict(1,8)-PC(1,k+s+1)); 

%             DistPC(k,3)=abs(Predict(1,7)-PC(1,k+s+1)); 

%             DistPC(k,4)=abs(Predict(1,8)-PC(1,k+s)); 

            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%Sum the Dist in order to create node I, each row are the 

%possible values for the node I (number of nodes I equals 

%number of training patterns) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

%         t=1; 

%          for u=1:4 %Deg 

%              %for w=1:4 %Agg 

%                  %for p=1:4  %Wid 

%                      %for q=1:4  %PC 

%                          I(k,t)=DistDeg(k,u); 

%                                +DistAgg(k,w); 

%                                +DistWid(j,p);  

%                                +DistPC(j,q); 

%                          t=t+1; 

%                      %end 

%                  %end 

%              %end 

%          end 

    %%%%%%%%%%%%%%%%%%% End L1 Norm %%%%%%%%%%%%%%%%%% 

     

    %%%%%%%%%%%%%%%%%%%%% L2 Norm %%%%%%%%%%%%%%%%%%%% 

     

    %%%%%%%%%% Uncomment for one input %%%%%%%%%%%%%%% 

            DistDeg(k,1)=(Predict(1,1)-Deg(1,k+s))^2; 

            DistDeg(k,2)=(Predict(1,2)-Deg(1,k+s+1))^2; 

            DistDeg(k,3)=(Predict(1,1)-Deg(1,k+s+1))^2; 

            DistDeg(k,4)=(Predict(1,2)-Deg(1,k+s))^2; 
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    %%%%%%%%%% Uncomment for two inputs %%%%%%%%%%%%%% 

%             DistAgg(k,1)=(Predict(1,3)-Agg(1,k+s))^2; 

%             DistAgg(k,2)=(Predict(1,4)-Agg(1,k+s+1))^2; 

%             DistAgg(k,3)=(Predict(1,3)-Agg(1,k+s+1))^2; 

%             DistAgg(k,4)=(Predict(1,4)-Agg(1,k+s))^2; 

    %%%%%%%%%% Uncomment for three inputs %%%%%%%%%%%%  

%             DistWid(k,1)=(Predict(1,5)-Wid(1,k+s))^2; 

%             DistWid(k,2)=(Predict(1,6)-Wid(1,k+s+1))^2; 

%             DistWid(k,3)=(Predict(1,5)-Wid(1,k+s+1))^2; 

%             DistWid(k,4)=(Predict(1,6)-Wid(1,k+s))^2; 

    %%%%%%%%%% Uncomment for four inputs %%%%%%%%%%%%%  

%             DistPC(k,1)=(Predict(1,7)-PC(1,k+s))^2; 

%             DistPC(k,2)=(Predict(1,8)-PC(1,k+s+1))^2; 

%             DistPC(k,3)=(Predict(1,7)-PC(1,k+s+1))^2; 

%             DistPC(k,4)=(Predict(1,8)-PC(1,k+s))^2; 

  

    %%%%%%%%%%%%% Sum & Take Square Root %%%%%%%%%%%%%% 

            t=1; 

            for u=1:4 %Deg 

                %for w=1:4 %Agg 

                    %for p=1:4  %Wid 

                        %for q=1:4  %PC 

                            I(k,t)=sqrt(DistDeg(k,u)); 

%                                 +DistAgg(k,w); 

%                                 +DistWid(j,p); 

%                                 +DistPC(j,q)); 

                            t=t+1; 

                        %end 

                    %end 

                %end 

            end 

     

    %%%%%%%%%%%%%%%%%%%%%% End L2 Norm %%%%%%%%%%%%%%%% 

            s=s+1; 

        end 

                   

        fI=exp(-I/(2*sigsq)); %output from the pattern unit 

        [RfI,CfI]=size(fI); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %%%%%%%%%%%%%%  CALCULATE SUMMATION UNITS %%%%%%%%%%%%% 

    %Summation unit A 

    p=1; 

    %Calculate product of fI and the corresponding weights     
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    in WA 

    s=0; 

    for j=1:RfI 

       t=1; 

       WANode=WA(1,j+s:j+s+1); 

       s=s+1; 

        for jj=1:CfI 

            for jjj=1:length(WANode) 

                Product(j,t)=(WANode(1,jjj)*fI(j,jj)); 

                t=t+1; 

            end 

        end 

    end 

  

    [RProd,CProd]=size(Product); 

%%% HAVE TO ADD/SUBTRACT LOOP FOR EACH TRAINING PATTERN %%% 

    t=1; 

    for u=1:CProd 

        for w=1:CProd 

            for p=1:CProd 

                  SumA(t,1)=Product(1,u) 

                           +Product(2,w) 

                           +Product(3,p); 

                t=t+1; 

            end 

        end 

    end 

             

    %Summation unit B 

    %Calculate product of fI and the corresponding weights     

    in WB 

    s=0; 

    for j=1:RfI 

       t=1; 

       WBNode=WB(1,j+s:j+s+1); 

       s=s+1; 

        for jj=1:CfI 

            for jjj=1:length(WBNode) 

                ProductB(j,t)=(WBNode(1,jjj)*fI(j,jj)); 

                t=t+1; 

            end 

        end 

    end 
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    [RProdB,CProdB]=size(ProductB); 

  %% HAVE TO ADD/SUBTRACT LOOP FOR EACH TRAINING PATTERN %% 

    t=1; 

    for u=1:CProdB 

        for w=1:CProdB 

            for p=1:CProdB 

                SumB(t,1)=ProductB(1,u) 

                         +ProductB(2,w) 

                         +ProductB(3,p); 

                t=t+1; 

            end 

        end 

    end 

  

    %%%%%%%%%%%%%% CALCULATE OUTPUT NODE %%%%%%%%%%%%%%%%%% 

     

    for j=1:length(SumA) 

        DivAB(j,1)=SumA(j,1)/SumB(j,1); 

    end 

    % Take min/max of possible output values 

    tt=0; 

    Out(ii,i+tt)=min(DivAB); 

    Out(ii,i+tt+1)=max(DivAB); 

    tt=tt+1; 

  

end 

end 

  

plot(Out(:,1:2),alphaLt,'b*'); 

xlim([0 200]); 

xlabel('RHA Score'); 

ylabel('Membership Degree'); 

  

%%%%%%%%%%%%%%%%%%%%%%  END MAIN CODE  %%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [ xout ] = Discretize(x,y,alphaLt) 

%Discretize function: This function takes the input 

triangular membership functions, assumes linear edges, and 

discretizes the function based on user defined alpha cuts 

  

[rowx,colx]=size(x); 

ylt=y(1,1:2); 

yrt=y(1,2:3); 
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m=1; 

  

for i=1:rowx 

    xlt=x(i,1:2); 

    xrt=x(i,2:3); 

    plt=polyfit(xlt,ylt,1); 

    prt=polyfit(xrt,yrt,1); 

    xoutlt1(i,:)=(alphaLt-plt(1,2))/plt(1,1); 

    xoutrt1(i,:)=(alphaLt-prt(1,2))/prt(1,1); 

    xout1(:,m)=(xoutlt1(i,1:end)); 

    xout1(:,m+1)=(xoutrt1(i,1:end)); 

    m=m+2; 

end 

n=1; 

for i=1:rowx 

    xlt=x(i,4:5); 

    xrt=x(i,5:6); 

    plt=polyfit(xlt,ylt,1); 

    prt=polyfit(xrt,yrt,1); 

    xoutlt2(i,:)=(alphaLt-plt(1,2))/plt(1,1); 

    xoutrt2(i,:)=(alphaLt-prt(1,2))/prt(1,1); 

    xout2(:,n)=(xoutlt2(i,1:end)); 

    xout2(:,n+1)=(xoutrt2(i,1:end)); 

    n=n+2; 

end 

% p=1; 

% for i=1:rowx 

%     xlt=x(i,7:8); 

%     xrt=x(i,8:9); 

%     plt=polyfit(xlt,ylt,1); 

%     prt=polyfit(xrt,yrt,1); 

%     xoutlt3(i,:)=(alphaLt-plt(1,2))/plt(1,1); 

%     xoutrt3(i,:)=(alphaLt-prt(1,2))/prt(1,1); 

%     xout3(:,p)=(xoutlt3(i,1:end)); 

%     xout3(:,p+1)=(xoutrt3(i,1:end)); 

%     p=p+2; 

% end 

% q=1; 

% for i=1:rowx 

%     xlt=x(i,10:11); 

%     xrt=x(i,11:12); 

%     plt=polyfit(xlt,ylt,1); 

%     prt=polyfit(xrt,yrt,1); 

%     xoutlt4(i,:)=(alphaLt-plt(1,2))/plt(1,1); 
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%     xoutrt4(i,:)=(alphaLt-prt(1,2))/prt(1,1); 

%     xout4(:,q)=(xoutlt4(i,1:end)); 

%     xout4(:,q+1)=(xoutrt4(i,1:end)); 

%     q=q+2; 

% end 

xout=[xout1 xout2];% xout3 xout4]; 

end 

%%%%%%%%%%%%%%%% END FUNCTION Discretize %%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [ xout ] = DiscretizeY(x,y,alphaLt) 

DiscretizeY function: This function takes the training 

output triangular membership functions, assumes linear 

edges, and discretizes the function based on user defined 

alpha cuts  

[rowx,colx]=size(x); 

ylt=y(1,1:2); 

yrt=y(1,2:3); 

m=1; 

for i=1:rowx 

     

    xlt=x(i,1:2); 

    xrt=x(i,2:3); 

    plt=polyfit(xlt,ylt,1); 

    prt=polyfit(xrt,yrt,1); 

    xoutlt1(i,:)=(alphaLt-plt(1,2))/plt(1,1); 

    xoutrt1(i,:)=(alphaLt-prt(1,2))/prt(1,1); 

    xout1(:,m)=(xoutlt1(i,1:end)); 

    xout1(:,m+1)=(xoutrt1(i,1:end)); 

    m=m+2; 

end 

xout=xout1; 

end 

%%%%%%%%%%%%%%%% END FUNCTION DiscretizeY %%%%%%%%%%%%%%%%% 
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APPENDIX B: GRNN CODE 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%A generalized regression neural network (GRNN)  

%Bree Mathon 

%Originally created: 11/10/09 

%Last modified: 10/1/10 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Input: 

%   XTrain - training input, patterns are assigned to rows 

%   YTrain - training output (pattern weights) 

%   XPredict - prediction input variables 

%   YRealScore - actual values of output in testing data      

%                set (if using) 

% Output: 

%   ScaleOut - GRNN prediction rounded to the nearest  

%              integer 

%   Class - prediction data calssified, if using for RGA,  

%           LRHA, RHA 

%   YRealClass - testing output values classed like GRNN  

%                output 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clear all 

close all 

clc 

  

%%%%%%%%%%%%%% READ IN TRAINING & PREDICTION DATA %%%%%%%%% 

% The input data is read in as each row is a pattern and 

each column is a parameter (variable) 

  

[XTrain]=xlsread('XTrain'); 

[YTrain]=xlsread('YTrain'); 

  

[XPredict]=xlsread('XPredict'); 

[YRealScore]=xlsread('YReal'); 

  

[RowsTrain,ColsTrain]=size(XTrain); 

[RowsPredict,ColsPredict]=size(XPredict); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%ScoreTotal=200; %use when predicting LRHA condition 

%ScoreTotal=160; %use when predicting new RHA condition 

ScoreTotal=1;    %use when predicting bio health class or  

                 when using data 

                 %that does not require classification of  

                 GRNN output 

                  

%%%%%%%%%%%%%%%%%%%%% SET SIGMA VALUE %%%%%%%%%%%%%%%%%%%%% 

  

sigma=[0.05:0.05:1];  %Use to determine optimal sigma value 

%sigma=0.5;  %NOTE: this is sigma not sigma squared, it 

will be squared later in the activation equation 

             

%%%%%%%%%%%%% NORMALIZE THE DATA IF NECESSARY %%%%%%%%%%%%% 

  

NormTrain=XTrain; 

%   for i=1:RowsTrain 

%       for j=1:ColsTrain 

%           Sqrd(i,j)=XTrain(i,j)^2; 

%           SumSq(i)=sum(Sqrd(i,:)); 

%           EuclidLength(i)=sqrt(SumSq(i)); 

%           NormTrain(i,j)=XTrain(i,j)/EuclidLength(i); 

%       end 

% 

%   end 

         

NormPredict=XPredict; 

%   for k=1:RowsPredict 

%       for m=1:ColsPredict 

%           SqrdPr(k,m)=XPredict(k,m)^2; 

%           SumSqPr(k)=sum(SqrdPr(k,:)); 

%           EuclidLengthPr (k)=sqrt(SumSqPr(k)); 

            NormPredict(k,m)=XPredict(k,m)/… 

                             EuclidLengthPr(k); 

%       end 

%   end 

  

NormPattern=YTrain; 

% MinY=min(YTrain); MaxY=max(YTrain); 

% NormPattern=(YTrain(:,1)-MinY)/(MaxY-MinY); 

  

%%%%%%%%%%%%%%% ASSIGN THE WEIGHTS %%%%%%%%%%%%%%%%%%%%%%%% 
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W1=NormTrain; 

WA=NormPattern; 

WB=ones(RowsTrain,1); 

  

[RW1,CW1]=size(W1); 

[RWA,CWA]=size(WA); 

[RWB,CWB]=size(WB); 

  

%%%%%%%%%%%%%%% CALCULATE PATTERN UNITS %%%%%%%%%%%%%%%%%%% 

  

for s=1:length(sigma) 

   for i=1:RowsPredict 

      for j=1:RW1 

         for k=1:ColsTrain 

          Dist(j,k)=(NormPredict(i,k)-W1(j,k))^2;  %L2 norm 

          %Dist(j,k)=abs(NormPredict(i,k)-W1(j,k));%L1 norm 

         end      

      end 

      %I=sum(Dist,2);%should be a col vector with the same   

      # of elements as the training set (if training has 20  

      inputs (j) with 3 parameters each (k) then there  

      would be 20 I elements for each prediction set - here  

      it is being overwrittien for each prediction) 

      I=sqrt(sum(Dist,2)); %L2 norm 

  

fI=exp(-I/(2*(sigma(s))^2)); %output from the pattern unit 

  

%%%%%%%%%%%%%%% CALCULATE SUMMATION UNITS %%%%%%%%%%%%%%%%% 

%Summation unit A 

A= dot(fI,WA); 

  

%Summation unit B 

B=dot(fI,WB); 

  

%%%%%%%%%%%%%%% CALCUALTE OUTPUT NODE %%%%%%%%%%%%%%%%%%%%% 

  

ScaleOut(i)=A/B; 

  

%Re-scale the output if data was normalized 

%Out(i)=(ScaleOut(i)*(MaxY-MinY))+MinY; 

%end 

  

ScaleOut=round(ScaleOut); 

Scale=ScaleOut'; 
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Out=(Scale/ScoreTotal); % Scales data between 0 and 1 if   

                          ScoreTotal > 1 so it can be  

                          classed 

YReal=(YRealScore/ScoreTotal); 

end 

  

%%%%%%%%%%%%%%%% CALCULATE RMSE %%%%%%%%%%%%%%%%%%%%%%%%%% 

  

for i=1:RowsPredict 

            Diff(i)=(ScaleOut(i)-YRealScore(i))^2; 

        end 

        SumDiff=sum(Diff); 

        RMS(s)=sqrt(SumDiff/RowsPredict); 

  

%%%%%%%% CLASS GRNN OUTPUT & TEST DATA (IF USING) %%%%%%%%% 

% %Class 

% for j=1:RowsPredict 

%     if Out(j,1)>=0 && Out(j,1)<=0.34 

%         Class(j,1)=1; 

%     elseif Out(j,1)>0.34 && Out(j,1)<=0.64 

%         Class(j,1)=2; 

%     elseif Out(j,1)>0.64 && Out(j,1)<=0.84 

%         Class(j,1)=3; 

%     elseif Out(j,1)>0.84 && Out(j,1)<=1.0 

%         Class(j,1)=4; 

%     end 

% end 

% for j=1:RowsPredict 

%     if YReal(j,1)>=0 && YReal(j,1)<=0.34 

%         YRealClass(j,1)=1; 

%     elseif YReal(j,1)>0.34 && YReal(j,1)<=0.64 

%         YRealClass(j,1)=2; 

%     elseif YReal(j,1)>0.64 && YReal(j,1)<=0.84 

%         YRealClass(j,1)=3; 

%     elseif YReal(j,1)>0.84 && YReal(j,1)<=1.0 

%         YRealClass(j,1)=4; 

%     end 

% end 

  

%%%%%%%%%%% CALCULATE NUMBER CORRECTLY PREDICTED %%%%%%%%%% 

% 

%%%% USE WHEN CHECKING PREDICTIONS THAT WERE CLASSIFIED %%% 

% 

% correct = 0; 
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% wrong(s)=0; 

% for p = 1:RowsPredict 

%     if Class(p,1) == YRealClass(p,1) 

%         correct=correct+1; 

%     else 

%         wrong(s)=wrong(s)+1; 

%     end 

% end 

% end 

% percent_correct = (correct/RowsPredict)*100 

  

%%%%%% USE WHEN PREDICTING DATA THAT IS NOT CLASSIFIED %%%% 

  

correct = 0; 

wrong(s)=0; 

for p = 1:RowsPredict 

    if Scale(p,1) == YRealScore(p,1) 

        correct=correct+1; 

    else 

        wrong(s)=wrong(s)+1; 

    end 

end 

end 

percent_correct = (correct/RowsPredict)*100 

  

plot(sigma,RMS) 

xlabel('sigma') 

ylabel('RMS') 

 

%%%%%%%%%%%%%%%%% END GRNN MAIN CODE %%%%%%%%%%%%%%%%%%%%%% 
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