5,494 research outputs found

    Transport and mixing in the radiation zones of rotating stars: I-Hydrodynamical processes

    Full text link
    The purpose of this paper is to improve the modelization of the rotational mixing which occurs in stellar radiation zones, through the combined action of the thermally driven meridional circulation and of the turbulence generated by the shear of differential rotation. The turbulence is assumed to be anisotropic, due to the stratification, with stronger transport in the horizontal directions than in the vertical. The main difference with the former treatments by Zahn (1992) and Maeder & Zahn (1998) is that we expand here the departures from spherical symmetry to higher order, and include explicitly the differential rotation in latitude, to first order. This allows us to treat simultaneously the bulk of a radiation zone and its tachocline(s). Moreover, we take fully into account the non-stationarity of the problem, which will enable us to tackle the rapid phases of evolution. The system of partial differential equations, which govern the transport of angular momentum, heat and chemical elements, is written in a form which makes it ready to implement in a stellar evolution code. Here the effect of a magnetic field is deliberately ignored; it will be included in forthcoming papers.Comment: 16 pages, no figures, accepted for publication in A&

    Dependence of Gas Phase Abundances in the ISM on Column Density

    Full text link
    Sightlines through high- and intermediate-velocity clouds allow measurements of ionic gas phase abundances, A, at very low values of HI column density, N(HI). Present observations cover over 4 orders of magnitude in N(HI). Remarkably, for several ions we find that the A vs N(HI) relation is the same at high and low column density and that the abundances have a relatively low dispersion (factors of 2-3) at any particular N(HI). Halo gas tends to have slightly higher values of A than disk gas at the same N(HI), suggesting that part of the dispersion may be attributed to the environment. We note that the dispersion is largest for NaI; using NaI as a predictor of N(HI) can lead to large errors. Important implications of the low dispersions regarding the physical nature of the ISM are: (a) because of clumping, over sufficiently long pathlengths N(HI) is a reasonable measure of the_local_ density of_most_ of the H atoms along the sight line; (b) the destruction of grains does not mainly take place in catastrophic events such as strong shocks, but is a continuous function of the mean density; (c) the cycling of the ions becoming attached to grains and being detached must be rapid, and the two rates must be roughly equal under a wide variety of conditions; (d) in gas that has a low average density the attachment should occur within denser concentrations

    Fast scan infrared detection and measuring instrument monthly progress report, oct. 1-31, 1964

    Get PDF
    Optics, scan, detector, and product design of fast scan infrared detection and measuring instrumen

    Impact of the frequency dependence of tidal Q on the evolution of planetary systems

    Get PDF
    Context. Tidal dissipation in planets and in stars is one of the key physical mechanisms that drive the evolution of planetary systems. Aims. Tidal dissipation properties are intrisically linked to the internal structure and the rheology of studied celestial bodies. The resulting dependence of the dissipation upon the tidal frequency is strongly different in the cases of solids and fluids. Methods. We compute the tidal evolution of a two-body coplanar system, using the tidal quality factor's frequency-dependencies appropriate to rocks and to convective fluids. Results. The ensuing orbital dynamics comes out smooth or strongly erratic, dependent on how the tidal dissipation depends upon frequency. Conclusions. We demonstrate the strong impact of the internal structure and of the rheology of the central body on the orbital evolution of the tidal perturber. A smooth frequency-dependence of the tidal dissipation renders a smooth orbital evolution while a peaked dissipation can furnish erratic orbital behaviour.Comment: Accepted for publication as a letter in Astronomy And Astrophysic

    Scaling laws to understand tidal dissipation in fluid planetary regions and stars I - Rotation, stratification and thermal diffusivity

    Get PDF
    Tidal dissipation in planets and stars is one of the key physical mechanisms driving the evolution of star-planet and planet-moon systems. Several signatures of its action are observed in planetary systems thanks to their orbital architecture and the rotational state of their components. Tidal dissipation inside the fluid layers of celestial bodies are intrinsically linked to the dynamics and the physical properties of the latter. This complex dependence must be characterized. We compute the tidal kinetic energy dissipated by viscous friction and thermal diffusion in a rotating local fluid Cartesian section of a star/planet/moon submitted to a periodic tidal forcing. The properties of tidal gravito-inertial waves excited by the perturbation are derived analytically as explicit functions of the tidal frequency and local fluid parameters (i.e. the rotation, the buoyancy frequency characterizing the entropy stratification, viscous and thermal diffusivities) for periodic normal modes. The sensitivity of the resulting possibly highly resonant dissipation frequency-spectra to a control parameter of the system is either important or negligible depending on the position in the regime diagram relevant for planetary and stellar interiors. For corresponding asymptotic behaviors of tidal gravito-inertial waves dissipated by viscous friction and thermal diffusion, scaling laws for the frequencies, number, width, height and contrast with the non-resonant background of resonances are derived to quantify these variations. We characterize the strong impact of the internal physics and dynamics of fluid planetary layers and stars on the dissipation of tidal kinetic energy in their bulk. We point out the key control parameters that really play a role and demonstrate how it is now necessary to develop ab-initio modeling for tidal dissipation in celestial bodies.Comment: 24 pages, 14 figures, accepted for publication in Astronomy & Astrophysic

    Understanding angular momentum transport in red giants: the case of KIC 7341231

    Get PDF
    Context. Thanks to recent asteroseismic observations, it has been possible to infer the radial differential rotation profile of subgiants and red giants. Aims. We want to reproduce through modeling the observed rotation profile of the early red giant KIC 7341231 and constrain the physical mechanisms responsible for angular momentum transport in stellar interiors. Methods. We compute models of KIC 7341231 including a treatment of shellular rotation and we compare the rotation profiles obtained with the one derived by Deheuvels et al. (2012). We then modify some modeling parameters in order to quantify their effect on the obtained rotation profile. Moreover, we mimic a powerful angular momentum transport during the Main Sequence and study its effect on the evolution of the rotation profile during the subgiant and red giant phases. Results. We show that meridional circulation and shear mixing alone produce a rotation profile for KIC 7341231 too steep compared to the observed one. An additional mechanism is then needed to increase the internal transport of angular momentum. We find that this undetermined mechanism has to be efficient not only during the Main Sequence but also during the much quicker subgiant phase. Moreover, we point out the importance of studying the whole rotational history of a star in order to explain its rotation profile during the red giant evolution.Comment: 8 pages, 8 figures, 5 table

    The surface signature of the tidal dissipation of the core in a two-layer planet

    Get PDF
    Tidal dissipation, which is directly linked to internal structure, is one of the key physical mechanisms that drive systems evolution and govern their architecture. A robust evaluation of its amplitude is thus needed to predict evolution time for spins and orbits and their final states. The purpose of this paper is to refine recent model of the anelastic tidal dissipation in the central dense region of giant planets, commonly assumed to retain a large amount of heavy elements, which constitute an important source of dissipation. The previous paper evaluated the impact of the presence of the static fluid envelope on the tidal deformation of the core and on the associated anelastic tidal dissipation, through the tidal quality factor Qc. We examine here its impact on the corresponding effective anelastic tidal dissipation, through the effective tidal quality factor Qp. We show that the strength of this mechanism mainly depends on mass concentration. In the case of Jupiter- and Saturn-like planets, it can increase their effective tidal dissipation by, around, a factor 2.4 and 2 respectively. In particular, the range of the rheologies compatible with the observations is enlarged compared to the results issued from previous formulations. We derive here an improved expression of the tidal effective factor Qp in terms of the tidal dissipation factor of the core Qc, without assuming the commonly used assumptions. When applied to giant planets, the formulation obtained here allows a better match between the an elastic core's tidal dissipation of a two-layer model and the observations.Comment: 5 pages, 2 figures, Accepted for publication in Astronomy & Astrophysic
    • …
    corecore