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ABSTRACT

Context. Tidal dissipation, which is directly linked to internal structure, is one of the key physical mechanisms that drive the evolution
of systems and govern their architecture. A robust evaluation of its amplitude is thus needed to predict the evolution time for spins
and orbits and their final states.
Aims. The purpose of this paper is to refine a recent model of the anelastic tidal dissipation in the central dense region of giant planets,
which are commonly assumed to retain a large amount of heavy elements, which constitute an important source of dissipation.
Methods. The previous paper evaluated the impact of the static fluid envelope on the tidal deformation of the core and on the
associated anelastic tidal dissipation through the tidal quality factor Qc. We examine here its impact on the corresponding effective
anelastic tidal dissipation through the effective tidal quality factor Qp.
Results. We show that the strength of this mechanism mainly depends on mass concentration. In the case of Jupiter- and Saturn-
like planets, it can increase their effective tidal dissipation by, around, factors 2.4 and 2, respectively. In particular, the range of the
rheologies compatible with the observations is enlarged compared to the results issued from previous formulations.
Conclusions. We derive here an improved expression of the tidal effective factor Qp in terms of the tidal dissipation factor of the
core Qc, without assuming the commonly used assumptions. When applied to giant planets, the formulation obtained here allows a
better match between the anelastic core’s tidal dissipation of a two-layer model and the observations.

Key words. planetary systems – planets and satellites: gaseous planets – planets and satellites: dynamical evolution and stability –
planets and satellites: interiors – planets and satellites: general – planet-star interactions

1. Introduction and motivations

In Remus et al. (2012, hereafter RMZL12), we have studied the
tidal dissipation of the anelastic core of a two-layer planet. In
that model, the core was assumed to be the main source of tidal
dissipation. The envelope was considered as a non-viscous fluid,
which was sensitive to the tidal deformation only through its
action on shape deformation. The paper derived the tidal dis-
sipation of the core, quantified by the ratio kc

2/Qc, where kc
2

is the norm of the complex Love number of second-order at
the mean surface of the core (k̃2(Rc)), and Qc is its tidal qual-
ity factor. Nonetheless, the equations that describe the dynami-
cal evolution of a given satellite are not directly expressed with
Im

[
k̃2(Rc)

]
= kc

2/Qc. According to Kaula (1962), for example,
the evolution rate of the semi-major axis da/dt is proportional
to R5

p kp
2/Qp, where we use “p” sub- and superscripts that relate

to the surface of the planet. Thus, the quantity that intervenes

here is the global tidal dissipation, also called the effective tidal
dissipation, i.e. the imaginary part of the complex Love number
taken at the surface of the planet.

As mentioned in RMZL12, recent studies managed to extract
the tidal dissipation of Jupiter (Lainey et al. 2009) and Saturn
(Lainey et al. 2012) from astrometric data. This quantity corre-
sponds to the ratio kp

2/Qp, assuming that Rp and the other param-
eters are known. Then, the question is which tidal dissipation in
the core is able to account for the observed dissipation. In other
words, if one considers, as in RMZL12, that the source of tidal
dissipation is restricted to the core, it seems obvious that one has
to relate the tidal dissipation in the core to the effective tidal dis-
sipation of the planet, which can be directly compared to the ob-
servations. The purpose of this paper is to explicitly derive such
a relation. In Sect. 2 we first discuss the limits of application
of the standard formulation and its implicit consequences. Then,
we show how to derive the effective tidal dissipation, knowing
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the tidal dissipation of the core, and taking both the overload
and the gravitational attraction exerted by the envelope on the
core into account. Finally, Sect. 3 evaluates the strength of this
mechanism in giant gas planets.

2. Effective tidal dissipation of a two-layer planet

As assumed in RMZL12, we consider a two-layer planet of ra-
dius Rp, that has homogeneous density ρc up to the radius Rc at
which a density jump occurs down to ρo, then staying constant
up to the surface of the planet.

2.1. The standard approach

Except for Dermott (1979) and recently RMZL12, none of the
studies dealing with the anelastic tidal dissipation of planets or
satellites have taken the role of an outer layer surrounding the
anelastic region into account as a non-negligible factor that could
enhance the tidal dissipation of the core. Thus, since the enve-
lope had no influence on the core, it so far could be omitted. The
problem could then be reduced to seeking the tidal dissipation of
a homogeneous planet of radius Rc and density ρc, which would
induce the same satellite migration as the supposed two-layer
planet of radius Rp. In that case, such a quantity would obey, as
commonly assumed,

kp
2

Qp
=

(
Rc

Rp

)5 kc
2

Qc
· (1)

Nevertheless, this formulation no longer holds if we consider
both the gravitational attraction and the overload exerted by the
tidally deformed envelope on the core.

2.2. Retroaction of the static envelope

In this section, we show that considering these effects as in
RMZL12, Eq. (1) is no longer valid. According to Eq. (6) of
Dermott et al. (1988),

kp
2

Qp
=

(
Rc

Rp

)5

F2
p

kc
2

Qc
· (2)

In this paper, the authors referred to Dermott (1979) for the def-
inition of the factor Fp, which “is a factor that allows for the
enhancement of the tide in the core by the tide in the overlying
ocean and for the effects of the density contrast between the core
and the ocean”.

We derive here an explicit expression of the factor

Gp ≡ F2
p =

(
Rp

Rc

)5 Im
[
k̃2(Rp)

]
Im

[
k̃2(Rc)

] , (3)

thanks to RMZL12, where we discussed the weaknesses of
Dermott’s formulation for the tidal dissipation of the core ap-
pearing in the 1979 paper.

The complex Love number is given by k̃2(RΛ) =
Φ̃′(RΛ)/U(RΛ), where U designates the tidal potential, Φ̃′ the
perturbed gravitational potential, and the Λ subscripts stand ei-
ther for c (for core surface quantities) or p (for planet surface
quantities). At any point P(r,Θ), where r is the distance to the

center of the planet, Θ the angle formed by the radial vector and
the line of centers, the tidal potential has the form

U(r) = −ζcgc
r2

R2
c

P2(cos Θ), (4)

where P2 the Legendre polynomial of second order, gc the grav-
ity induced by the core at its surface, and

ζc =
m
M

(Rc

a

)3

Rc (5)

is the tidal height at the surface of the core, with m the mass of
the perturber and a the semi-major axis of its orbit.

Let us denote the core and planet surfaces by

sc = Rc [1 + S 2P2(cos Θ)] , (6)
sp = Rp [1 + T2P2(cos Θ)] , (7)

respectively. Since there is no physical reason for the surfaces
of the core and the envelope to suffer the same deformation, in
general, T2 , S 2. The way these quantities are linked depends
on the effective forces acting on the surface of the core. From
here on, we denote by ε the ratio defined by

T2 = εS 2. (8)

We first consider a purely elastic core. The self-gravitational po-
tential of the planet is the sum of the core and envelope contri-
butions. In the envelope (where sc 6 r 6 sp), they are given by
Eqs. (49), (50) of RMZL12:

Φc(r,Θ) = −gcRc

[
Rc

r
+

3
5

(Rc

r

)3

S 2P2

]
, (9a)

Φo(r,Θ) = −gcRc
ρo

ρc

3R2
p − r2

2R2
c

+
3
5

(
r

Rc

)2

T2P2

−
Rc

r
−

3
5

(Rc

r

)3

S 2P2

]
. (9b)

Thus, the effective deforming parts are

Φ′ (RΛ) = −gcRc

(
RΛ

Rc

)2

Z′ΛS 2P2(cos Θ), (10a)

where

Z′Λ =
3
5

ρo

ρc
ε +

(
1 −

ρo

ρc

) (
RΛ

Rc

)5 · (10b)

Therefore,

k2(RΛ) ≡
Φ(RΛ)
U(RΛ)

=
Rc

ζc
Z′ΛS 2. (11)

The condition that the surface of the planet sc is an equipotential
of the total field Φ + U leads to

ζc

Rc
=

2
5
ρo

ρc
(αε − β) S 2, (12)

where

α = 1 +
5
2

(
ρc

ρo
− 1

) (
Rc

Rp

)3

; β =
3
5

(
Rc

Rp

)2

(α − 1). (13)
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We finally obtain the general form of the Love numbers, gener-
alized to the case of a two-layer planet:

k2(RΛ) =
5
2
ρc

ρo

Z′
Λ

αε − β
· (14)

All the unknown quantities require the expression of ε to be
completely determined. As mentioned before, it depends on the
forces acting on the surface of the core. According to RMZL12,
the radial displacement at the surface of the core ξr(Rc) =
RcS 2P2(cos Θ) is linked to the total normal traction TN(Rc) =
XP2(cos Θ) applied to it, following

S 2P2(cos Θ) =
ξr(Rc)

Rc
=

5
19µc

TN(Rc) =
5

19µc
XP2(cos Θ), (15)

where µc is the shear modulus of the core. This traction corre-
sponds to the normal stress acting on the surface of the core,
and it has to take both the gravitational forces and the solid and
fluid loads into account. Therefore X is given by Eqs. (41) of
RMZL12

X =
2ρogcRc

5

(
1 −

ρo

ρc

) [(
α +

3
2

)
ε − β −

3
2
−
ρc

ρo

]
S 2. (16)

From Eq. (15), we are now able to write

ε =

19µc
2ρcgcRc

+
ρo
ρc

(
1 − ρo

ρc

) (
β + 3

2

)
+

(
1 − ρo

ρc

)
(
α + 3

2

)
ρo
ρc

(
1 − ρo

ρc

) · (17)

To treat the anelastic case, we can apply the correspondence
principle (Biot 1954), stipulating that all the developments made
so far are still valid if we now consider complex quantities. We
then denote the Fourier transform of a given quantity x by x̃.
The complex Love numbers at the core and planet surfaces can
be expressed in terms of ε̃:

k̃2(Rc) =
3
2

ε̃ − 1 +
ρc
ρo

αε̃ − β
, and k̃2(Rp) =

3
2
ε̃ + 2

3 β

αε̃ − β
· (18)

Thanks to Eq. (18), we are now able to relate the tidal dissipation
in the core to the effective tidal dissipation of the planet, given
by the imaginary part of the corresponding Love numbers. We
denote the real (resp. imaginary) part of ε̃ by ε1 (resp. ε2). The
imaginary parts of the Love numbers k̃2(Rc) and k̃2(Rp) are

Im
[
k̃2(Rc)

]
= −

kc
2

Qc
=

3
2

[(
1 − ρc

ρo

)
α − β

]
ε2

(αε1 − β)2 + (αε2)2 , (19a)

Im
[
k̃2(Rp)

]
= −

kp
2

Qp
= −

3
2

(
1 + 2

3α
)
βε2

(αε1 − β)2 + (αε2)2 · (19b)

Equation (2) linking these two quantities then becomes

kp
2

Qp
=

(
Rc

Rp

)5

Gp
kc

2

Qc
, (20a)

where Gp takes the form

Gp =

α +
3
2

α +
3
2

(
Rc

Rp

)5 · (20b)

First, one may note that this quantity is not related to the fac-
tor F that accounts for the enhancement of the tidal deformation
of the core due to the presence of the envelope (see Eq. (28)
of RMZL12). That contradicts Dermott et al. (1988), in which,
moreover, no derivation of the formula (given here in Eq. (2))
was detailed. Second, we note that Gp does not depend on ε,
which links the amplitudes of the deformation of the core and
planet surfaces, hence not on the shear modulus of the core µc.
It only depends on the density contrast between the core and
the envelope (through the ratio ρo/ρc) and the core size (through
its normalized radius Rc/Rp). This result is coherent with our
having considered a non-dissipative envelope. Therefore, fac-
tor Gp appears like a quantity that characterizes the transmission
of the core’s tidal dissipation up to the surface of the planet. Last,
Gp tends to the value 5/2 of the uniform asymptotic case when
either Rc/Rp → 0 or ρo/ρc → 1.

3. Application to Jupiter- and Saturn-like planets

In RMZL12, we used the standard formula (Eq. (1)) to quantify
the effective tidal dissipation of Jupiter- and Saturn-like planets
when modeled by a two-layer synthetic planet. In the present pa-
per we show how using the refined formula (Eq. (20)) increases
its predicted amplitude.

3.1. Internal structure parameters

As explained in RMZL12, we have poor constraints on the inter-
nal structure of the giant planets Jupiter and Saturn. Nonetheless,
several models have been developed that give some insight
into the plausible density profiles in such planets. Following
RMZL12, we used the models of Guillot (1999) for Jupiter and
Hubbard et al. (2009) for Saturn, from which we are able to
build two-layer synthetic planetary models with a dense cen-
tral icy/rocky core and a fluid envelope made of hydrogen and
helium:

– Jupiter-like: RJ
c = 0.126 × RJ

p and MJ
c = 6.41 × M⊕,

– Saturn-like: RS
c = 0.219 × RS

p and MS
c = 18.65 × M⊕,

where M⊕ stands for the mass of the Earth. The most unknown
quantities concern the rheology of the predicted core of giant
planets. Even so, one may consider some boundary values defin-
ing intervals in which the viscoelastic parameters, of the used
Maxwell rheological model, are likely to take their values. In
RMZL12, we estimated such ranges based on our present knowl-
edge of the rheology of the Earth mantle and the icy satellites of
Jupiter (Henning et al. 2009; Tobie 2003).

Recent studies of rocks viscosity at very high pressure
(Karato 2011) were also considered. Thus, in RMZL12, the more
realistic values of the viscoelastic parameters were assumed to
lie in the ranges 1012 Pa s 6 η 6 1021 Pa s for the viscosity and
4×109 Pa 6 G 6 1011 Pa for the rigidity, for an unknown mixture
of ice and silicates. We may also extrapolate the range of values
taken by G at very high pressure and temperature by using a
simple Steinberg-Cochran-Guinam law (Steinberg et al. 1980):

G(P,T ) = G0 +
∂G
∂P

P
(ρ/ρ0)1/3 +

∂G
∂T

(T − 300), (21)

where P, T , ρ, and ρ0 are the pressure, temperature, density, and
density at the reference temperature T = 300 K, respectively.
Assuming the values of G0 = 1.66 × 1011 Pa, ∂PG = 1.56,
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Fig. 1. Factor Gp which quantifies the impact of the fluid envelope on
the effective tidal dissipation factor Qp, as a function of the envelope
height through the ratio Rc/Rp.

and ∂T G = −0.020 GPa K−1 given by Murakami et al. (2012)
for the lower mantle of the Earth, and the rough approxima-
tion (ρ/ρ0)1/3 = 1, the rigidity of silicates at T = 12 300 K and
P = 2000 GPa (as intermediate values at the upper boundary of
the core of Jupiter and Saturn) reaches the value G = 3 × 1012 Pa.
In the following, we thus assume, as the most likely values of the
viscoelastic parameters,

– for the viscosity: 1012 Pa s 6 η 6 1021 Pa s,
– for the rigidity: 4 × 109 Pa 6 G 6 1012 Pa.

3.2. Impact of the envelope height

Our goal is to quantify the role of the fluid envelope in the ef-
fective tidal dissipation. According to Eq. (3), the strength of
the associated mechanism is given by the factor Gp, represented
in Fig. 1 as a function of the fluid envelope height, for gas gi-
ant planets. This figure shows that the effective tidal dissipation
increases with the height of the envelope, by a factor of 1.95
to 2.43 for an envelope at least as high as for Jupiter and Saturn.

3.3. Amplitude of the effective tidal dissipation

Using astrometric data, Lainey et al. (2009, 2012) determined
the tidal dissipation in Jupiter (QJupiter = (3.56 ± 0.56) × 104)
and Saturn (QSaturn = (1.682 ± 0.540) × 103), respectively.
Figure 2 shows the amplitude of the effective tidal dissipation
factor Qp, as given by Eq. (1) for Figs. 2a and c, and Eq. (20)
for Figs. 2b and d, as a function of the viscoelastic parameters G
and η of the Maxwell model, for the synthetic models of Jupiter
and Saturn built in Sect. 3.1, and compares the results with the
observed values.

The contour plots of Qp from Eq. (20) (Figs. 2b and d) are
slightly shifted to the bottom and expanded when compared to
those resulting from Eq. (1) (Figs. 2a and c), as in Remus et al.
(2012). If we only consider the more realistic values of the rhe-
ological parameters (as defined in Sect. 3.1), the observed val-
ues of tidal dissipation in Jupiter and Saturn are thus reached
for sligthly enlarged ranges of values of G and η compared with
previous results (Table 1).

4. Conclusions

In this work, we revisit the role of the fluid envelope of a two-
layer giant planet where the dissipation is assumed to originate

(a) Jupiter-like (standard) (b) Jupiter-like (new)

(c) Saturn-like (standard) (d) Saturn-like (new)

Fig. 2. Effective tidal dissipation factor Qp of synthetic models of
Jupiter (a, c) and Saturn (b, d) as a function of the viscoelastic parame-
ters G and η: (a, b) use Eq. (1) and (c, d) use Eq. (20). The red dashed
lines give the values of Lainey et al. (2009, 2012). The blue lines bound
the region of the most likely rheological values (see text). We assume:
Rp = {10.97, 9.14} R⊕ (R⊕ is the Earth radius); Mp = {317.8, 95.16} M⊕.

Table 1. Ranges of values of the rheological parameters G and η for
which the effective tidal dissipation factor Qp of the two-layer model
reaches the observed values.

(a) Jupiter

Standard model (Eq. (1)) This paper (Eq. (20))

G ∈ [1.28 × 1011, 1012] Pa G ∈ [4.46 × 1010, 1012] Pa
η ∈ [0.18, 6.23] × 1015 Pa s η ∈ [0.07, 15.5] × 1015 Pa s

(b) Saturn

Standard model (Eq. (1)) This paper (Eq. (20))

G ∈ [3.52 × 1011, 1012] Pa G ∈ [1.49 × 1011, 1012] Pa
η ∈ [0.59, 6.58] × 1015 Pa s η ∈ [0.28, 13.7] × 1015 Pa s

in the anelastic core. We derive an improved formulation of the
effective tidal dissipation factor (Eq. (20)), which we express
in terms of the tidal dissipation factor of the core obtained by
RMZL12. It improves modeling of the role of the anelastic core
of giant planets as an important source of tidal dissipation. When
applied to the gas giants Jupiter and Saturn, the amplitude of
their effective tidal dissipation is enhanced by about a factor
of two, thus keeping the same order of magnitude (see Figs. 1
and 2). However, the model now takes all the physical mecha-
nisms that act on the tidal dissipation of the core of giant planets
into account. Finally, this new model has recently been used to
compare the relative strength of the different tidal mechanisms
that take place in gas giant planets, namely the anelastic tidal dis-
sipation in the core (Remus et al. 2012) and the turbulent friction
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acting on tidal inertial waves in the convective envelope (Ogilvie
& Lin 2004), showing that the former could slightly dominate
the latter (Guenel et al. 2014).
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