607 research outputs found
Interstellar Dust Close to the Sun
The low density interstellar medium (ISM) close to the Sun and inside of the
heliosphere provides a unique laboratory for studying interstellar dust grains.
Grain characteristics in the nearby ISM are obtained from observations of
interstellar gas and dust inside of the heliosphere and the interstellar gas
towards nearby stars. Comparison between the gas composition and solar
abundances suggests that grains are dominated by olivines and possibly some
form of iron oxide. Measurements of the interstellar Ne/O ratio by the
Interstellar Boundary Explorer spacecraft indicate that a high fraction of
interstellar oxygen in the ISM must be depleted onto dust grains. Local
interstellar abundances are consistent with grain destruction in ~150 km/s
interstellar shocks, provided that the carbonaceous component is hydrogenated
amorphous carbon and carbon abundances are correct. Variations in relative
abundances of refractories in gas suggest variations in the history of grain
destruction in nearby ISM. The large observed grains, > 1 micron, may indicate
a nearby reservoir of denser ISM. Theoretical three-dimensional models of the
interaction between interstellar dust grains and the solar wind predict that
plumes of about 0.18 micron dust grains form around the heliosphere.Comment: 2011 AGOS Taiwan meeting; accepted for publication in Earth, Planets
and Spac
Clues from nearby galaxies to a better theory of cosmic evolution
The great advances in the network of cosmological tests show that the
relativistic Big Bang theory is a good description of our expanding universe.
But the properties of nearby galaxies that can be observed in greatest detail
suggest a still better theory would more rapidly gather matter into galaxies
and groups of galaxies. This happens in theoretical ideas now under discussion.Comment: published in Natur
The impact of negative selection on thymocyte migration in the medulla
Developing thymocytes are screened for self-reactivity before they exit the thymus, but how thymocytes scan the medulla for self antigens is unclear. Using two-photon microscopy, we observed that medullary thymocytes migrated rapidly and made frequent, transient contacts with dendritic cells. In the presence of a negative selecting ligand, thymocytes slowed, became confined to areas of approximately 30 mum in diameter and had increased contact with dendritic cells surrounding confinement zones. One third of polyclonal medullary thymocytes also showed confined, slower migration and may correspond to autoreactive thymocytes. Our data suggest that many autoreactive thymocytes do not undergo immediate arrest and death after encountering a negative selecting ligand but instead adopt an altered migration program while remaining in the medullary microenvironment
The quest for the solar g modes
Solar gravity modes (or g modes) -- oscillations of the solar interior for
which buoyancy acts as the restoring force -- have the potential to provide
unprecedented inference on the structure and dynamics of the solar core,
inference that is not possible with the well observed acoustic modes (or p
modes). The high amplitude of the g-mode eigenfunctions in the core and the
evanesence of the modes in the convection zone make the modes particularly
sensitive to the physical and dynamical conditions in the core. Owing to the
existence of the convection zone, the g modes have very low amplitudes at
photospheric levels, which makes the modes extremely hard to detect. In this
paper, we review the current state of play regarding attempts to detect g
modes. We review the theory of g modes, including theoretical estimation of the
g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the
techniques that have been used to try to detect g modes. We review results in
the literature, and finish by looking to the future, and the potential advances
that can be made -- from both data and data-analysis perspectives -- to give
unambiguous detections of individual g modes. The review ends by concluding
that, at the time of writing, there is indeed a consensus amongst the authors
that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
Oleate but not stearate induces the regulatory phenotype of myeloid suppressor cells
Tumor infiltrating myeloid cells play contradictory roles in the tumor
development. Dendritic cells and classical activated macrophages support anti-
tumor immune activity via antigen presentation and induction of pro-
inflammatory immune responses. Myeloid suppressor cells (MSCs), for instance
myeloid derived suppressor cells (MDSCs) or tumor associated macrophages play
a critical role in tumor growth. Here, treatment with sodium oleate, an
unsaturated fatty acid, induced a regulatory phenotype in the myeloid
suppressor cell line MSC-2 and resulted in an increased suppression of
activated T cells, paralleled by increased intracellular lipid droplets
formation. Furthermore, sodium oleate potentiated nitric oxide (NO) production
in MSC-2, thereby increasing their suppressive capacity. In primary polarized
bone marrow cells, sodium oleate (C18:1) and linoleate (C18:2), but not
stearate (C18:0) were identified as potent FFA to induce a regulatory
phenotype. This effect was abrogated in MSC-2 as well as primary cells by
specific inhibition of droplets formation while the inhibition of de novo FFA
synthesis proved ineffective, suggesting a critical role for exogenous FFA in
the functional induction of MSCs. Taken together our data introduce a new
unsaturated fatty acid-dependent pathway shaping the functional phenotype of
MSCs, facilitating the tumor escape from the immune system
CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology
In our functional dissection of the CD33 Alzheimer’s disease susceptibility locus, we find that the rs3865444C risk allele is associated with greater cell surface expression of CD33 in monocytes (t50 = 10.06, pjoint=1.3×10–13) of young and older individuals. It is also associated with (1) diminished internalization of Aβ42) (2) accumulation of neuritic amyloid pathology and fibrillar amyloid on in vivo imaging and (3), increased numbers of activated human microglia
Preventive immunization of aged and juvenile non-human primates to beta-amyloid
Background: Immunization against beta-amyloid (Aβ) is a promising approach for the treatment of Alzheimer's disease, but the optimal timing for the vaccination remains to be determined. Preventive immunization approaches may be more efficacious and associated with fewer side-effects; however, there is only limited information available from primate models about the effects of preclinical vaccination on brain amyloid composition and the neuroinflammatory milieu.Methods: Ten non-human primates (NHP) of advanced age (18-26 years) and eight 2-year-old juvenile NHPs were immunized at 0, 2, 6, 10 and 14 weeks with aggregated Aβ42 admixed with monophosphoryl lipid A as adjuvant, and monitored for up to 6 months. Anti-Aβ antibody levels and immune activation markers were assessed in plasma and cerebrospinal fluid samples before and at several time-points after immunization. Microglial activity was determined by [11C]PK11195 PET scans acquired before and after immunization, and by post-mortem immunohistochemical and real-time PCR evaluation. Aβ oligomer composition was assessed by immunoblot analysis in the frontal cortex of aged immunized and non-immunized control animals.Results: All juvenile animals developed a strong and sustained serum anti-Aβ IgG antibody response, whereas only 80 % of aged animals developed detectable antibodies. The immune response in aged monkeys was more delayed and significantly weaker, and was also more variable between animals. Pre- and post-immunization [11C]PK11195 PET scans showed no evidence of vaccine-related microglial activation. Post-mortem brain tissue analysis indicated a low overall amyloid burden, but revealed a significant shift in oligomer size with an increase in the dimer:pentamer ratio in aged immunized animals compared with non-immunized controls (P < 0.01). No differences were seen in microglial density or expression of classical and alternative microglial activation markers between immunized and control animals.Conclusions: Our results indicate that preventive Aβ immunization is a safe therapeutic approach lacking adverse CNS immune system activation or other serious side-effects in both aged and juvenile NHP cohorts. A significant shift in the composition of soluble oligomers towards smaller species might facilitate removal of toxic Aβ species from the brain. © 2012 Kofler et al.; licensee BioMed Central Ltd
Effects of intragastric infusion of inosine monophosphate and l-glutamate on vagal gastric afferent activity and subsequent autonomic reflexes
In this study we investigated the effects of intragastric infusion of palatable basic taste substances (umami, sweet, and salty) on the activity of the vagal gastric afferent nerve (VGA), the vagal celiac efferent nerve (VCE), and the splanchnic adrenal efferent nerve (SAE) in anesthetized rats. To test the three selected taste groups, rats were infused with inosine monophosphate (IMP) and l-glutamate (GLU) for umami, with glucose and sucrose for sweet, and with sodium chloride (NaCl) for salty. Infusions of IMP and GLU solutions significantly increased VGA activity and induced the autonomic reflex, which activated VCE and SAE; these reflexes were abolished after sectioning of the VGA. Infusions of glucose, sucrose and NaCl solutions, conversely, had no significant effects on VGA activity. These results suggest that umami substances in the stomach send information through the VGA to the brain and play a role in the reflex regulation of visceral functions
At-Risk and Recent-Onset Type 1 Diabetic Subjects Have Increased Apoptosis in the CD4+CD25+(high) T-Cell Fraction
BACKGROUND: In experimental models, Type 1 diabetes T1D can be prevented by adoptive transfer of CD4+CD25+ FoxP3+ suppressor or regulatory T cells. Recent studies have found a suppression defect of CD4+CD25+(high) T cells in human disease. In this study we measure apoptosis of CD4+CD25+(high) T cells to see if it could contribute to reduced suppressive activity of these cells. METHODS AND FINDINGS: T-cell apoptosis was evaluated in children and adolescent 35 females/40 males subjects comprising recent-onset and long-standing T1D subjects and their first-degree relatives, who are at variable risk to develop T1D. YOPRO1/7AAD and intracellular staining of the active form of caspase 3 were used to evaluate apoptosis. Isolated CD4+CD25+(high) and CD4+CD25− T cells were co-cultured in a suppression assay to assess the function of the former cells. We found that recent-onset T1D subjects show increased apoptosis of CD4+CD25+(high) T cells when compared to both control and long-standing T1D subjects p<0.0001 for both groups. Subjects at high risk for developing T1D 2–3Ab+ve show a similar trend p<0.02 and p<0.01, respectively. On the contrary, in long-standing T1D and T2D subjects, CD4+CD25+(high) T cell apoptosis is at the same level as in control subjects p = NS. Simultaneous intracellular staining of the active form of caspase 3 and FoxP3 confirmed recent-onset FoxP3+ve CD4+CD25+(high) T cells committed to apoptosis at a higher percentage 15.3±2.2 compared to FoxP3+ve CD4+CD25+(high) T cells in control subjects 6.1±1.7 p<0.002. Compared to control subjects, both recent-onset T1D and high at-risk subjects had significantly decreased function of CD4+CD25+(high) T cells p = 0.0007 and p = 0.007, respectively. CONCLUSIONS: There is a higher level of ongoing apoptosis in CD4+CD25+(high) T cells in recent-onset T1D subjects and in subjects at high risk for the disease. This high level of CD4+CD25+(high) T-cell apoptosis could be a contributing factor to markedly decreased suppressive potential of these cells in recent-onset T1D subjects
- …
