149 research outputs found

    Tracking progress in Musaceae Genomics with the Banana Genome Hub

    Get PDF

    GreenPhylDB: A Gene Family Database for plant functional Genomics

    Get PDF
    With the increasing number of genomes being sequenced, a major objective is to transfer accurate annotation from characterised proteins to uncharacterised sequences. Consequently, comparative genomics has become a usual and efficient strategy in functional genomics. The release of various annotated genomes of plants, such as _O. sativa_ and _A. thaliana_, has allowed setting up comprehensive lists of gene families defined by automated methods. However, like for gene sequence, manual curation of gene families is an important requirement that has to be undertaken. GreenPhylDB comprises protein sequences of 12 plant species fully sequenced that were grouped into homeomorphic families using similarity-based methods. Clusters are finally processed by phylogenetic analysis to infer orthologs and paralogs that will be particularly helpful to study genome evolution. Previously, each cluster has to be curated (i.e. properly named and classified) using different sources of information. A web interface for plant gene families’ curation was developed for that purpose. This interface, accessible on GreenPhylDB ("http://greenphyl.cirad.fr":http://greenphyl.cirad.fr), centralizes external references (e.g. InterPro, KEGG, Swiss-Prot, PIRSF, Pubmed) related to all gene members of the clusters and shows statistics and automatic analysis. We believe that this synthetic view of data available for a gene cluster, combined with basic guidelines, is an efficient way to provide reliable method for gene family annotations

    Glycosyltransferase Family 61 in Liliopsida (Monocot): The Story of a Gene Family Expansion

    Get PDF
    Plant cell walls play a fundamental role in several plant traits and also influence crop use as livestock nutrition or biofuel production. The Glycosyltransferase family 61 (GT61) is involved in the synthesis of cell wall xylans. In grasses (Poaceae), a copy number expansion was reported for the GT61 family, and raised the question of the evolutionary history of this gene family in a broader taxonomic context. A phylogenetic study was performed on GT61 members from 13 species representing the major angiosperm clades, in order to classify the genes, reconstruct the evolutionary history of this gene family and study its expansion in monocots. Four orthogroups (OG) were identified in angiosperms with two of them displaying a copy number expansion in monocots. These copy number expansions resulted from both tandem and segmental duplications during the genome evolution of monocot lineages. Positive selection footprints were detected on the ancestral branch leading to one of the orthogroups suggesting that the gene number expansion was accompanied by functional diversification, at least partially. We propose an OG-based classification framework for the GT61 genes at different taxonomic levels of the angiosperm useful for any further functional or translational biology study
    • …
    corecore