198 research outputs found

    Complex oscillations with multiple timescales - Application to neuronal dynamics

    Get PDF
    The results gathered in this thesis deal with multiple time scale dynamical systems near non-hyperbolic points, giving rise to canard-type solutions, in systems of dimension 2, 3 and 4. Bifurcation theory and numerical continuation methods adapted for such systems are used to analyse canard cycles as well as canard-induced complex oscillations in three-dimensional systems. Two families of such complex oscillations are considered: mixed-mode oscillations (MMOs) in systems with two slow variables, and bursting oscillations in systems with two fast variables. In the last chapter, we present recent results on systems with two slow and two fast variables, where both MMO-type dynamics and bursting-type dynamics can arise and where complex oscillations are also organised by canard solutions. The main application area that we consider here is that of neuroscience, more precisely low-dimensional point models of neurons displaying both sub-threshold and spiking behaviour. We focus on analysing how canard objects allow to control the oscillatory patterns observed in these neuron models, in particular the crossings of excitability thresholds

    On the numerical continuation of isolas of equilibria

    Get PDF
    We present a numerical strategy to compute one-parameter families of isolas of equilibrium solutions in ODEs. Isolas are solution branches closed in parameter space. Numerical continuation is required to compute one single isola since it contains at least one unstable segment. We show how to use pseudo-arclength predictor-corrector schemes in order to follow an entire isola in parameter space, as an individual object, by posing a suitable algebraic problem. We continue isolas of equilibria in a two-dimensional dynamical system, the so-called continuous stirred tank reactor model, and also in a three-dimensional model related to plasma physics. We then construct a toy model and follow a family of isolas past a fold and illustrate how to initiate the computation close to a formation center, using approximate ellipses in a model inspired by the Van der Pol equation. We also show how to introduce node adaptivity in the discretization of the isola, so as to concentrate nodes in region with higher curvature. We conclude by commenting on the extension of the proposed numerical strategy to the case of isolas of periodic orbits

    Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system

    Get PDF
    A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for nonzero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary condition. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial-dynamical system

    From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation

    Get PDF
    International audienceIn this article, we study canard solutions of the forced van der Pol equation in the relaxation limit for low-, intermediate-, and high-frequency periodic forcing. A central numerical observation made herein is that there are two branches of canards in parameter space which extend across all positive forcing frequencies. In the low-frequency forcing regime, we demonstrate the existence of primary maximal canards induced by folded saddle nodes of type I and establish explicit formulas for the parameter values at which the primary maximal canards and their folds exist. Then, we turn to the intermediate- and high-frequency forcing regimes and show that the forced van der Pol possesses torus canards instead. These torus canards consist of long segments near families of attracting and repelling limit cycles of the fast system, in alternation. We also derive explicit formulas for the parameter values at which the maximal torus canards and their folds exist. Primary maximal canards and maximal torus canards correspond geometrically to the situation in which the persistent manifolds near the family of attracting limit cycles coincide to all orders with the persistent manifolds that lie near the family of repelling limit cycles. The formulas derived for the folds of maximal canards in all three frequency regimes turn out to be representations of a single formula in the appropriate parameter regimes, and this unification confirms the central numerical observation that the folds of the maximal canards created in the low-frequency regime continue directly into the folds of the maximal torus canards that exist in the intermediate- and high-frequency regimes. In addition, we study the secondary canards induced by the folded singularities in the low-frequency regime and find that the fold curves of the secondary canards turn around in the intermediate-frequency regime, instead of continuing into the high-frequency regime. Also, we identify the mechanism responsible for this turning. Finally, we show that the forced van der Pol equation is a normal form-type equation for a class of single-frequency periodically driven slow/fast systems with two fast variables and one slow variable which possess a non-degenerate fold of limit cycles. The analytic techniques used herein rely on geometric desingularisation, invariant manifold theory, Melnikov theory, and normal form methods. The numerical methods used herein were developed in Desroches et al. (SIAM J Appl Dyn Syst 7:1131–1162, 2008, Nonlinearity 23:739–765 2010)

    Mixed-mode oscillations in a multiple time scale phantom bursting system

    Get PDF
    In this work we study mixed mode oscillations in a model of secretion of GnRH (Gonadotropin Releasing Hormone). The model is a phantom burster consisting of two feedforward coupled FitzHugh-Nagumo systems, with three time scales. The forcing system (Regulator) evolves on the slowest scale and acts by moving the slow nullcline of the forced system (Secretor). There are three modes of dynamics: pulsatility (transient relaxation oscillation), surge (quasi steady state) and small oscillations related to the passage of the slow nullcline through a fold point of the fast nullcline. We derive a variety of reductions, taking advantage of the mentioned features of the system. We obtain two results; one on the local dynamics near the fold in the parameter regime corresponding to the presence of small oscillations and the other on the global dynamics, more specifically on the existence of an attracting limit cycle. Our local result is a rigorous characterization of small canards and sectors of rotation in the case of folded node with an additional time scale, a feature allowing for a clear geometric argument. The global result gives the existence of an attracting unique limit cycle, which, in some parameter regimes, remains attracting and unique even during passages through a canard explosion.Comment: 38 pages, 16 figure

    Time-coded neurotransmitter release at excitatory and inhibitory synapses.

    Get PDF
    Communication between neurons at chemical synapses is regulated by hundreds of different proteins that control the release of neurotransmitter that is packaged in vesicles, transported to an active zone, and released when an input spike occurs. Neurotransmitter can also be released asynchronously, that is, after a delay following the spike, or spontaneously in the absence of a stimulus. The mechanisms underlying asynchronous and spontaneous neurotransmitter release remain elusive. Here, we describe a model of the exocytotic cycle of vesicles at excitatory and inhibitory synapses that accounts for all modes of vesicle release as well as short-term synaptic plasticity (STSP). For asynchronous release, the model predicts a delayed inertial protein unbinding associated with the SNARE complex assembly immediately after vesicle priming. Experiments are proposed to test the model's molecular predictions for differential exocytosis. The simplicity of the model will also facilitate large-scale simulations of neural circuits
    corecore