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Sudden changes in a dynamical system can be modelled by mixtures of slow and fast

timescales, or by combining smooth change with sudden switching. In sets of ordinary

differential equations, the former are modelled using singular perturbations, the latter using

discontinuities. The relation between the two is not well understood, and here we develop

a method called pinching, which approximates a singularly perturbed dynamical system by

a discontinuous one, by making a discontinuous change of variables. We study pinching in

the context of the canard phenomenon at a folded node. The folded node is a singularity

associated with loss of normal hyperbolicity in slow-fast systems with (at least) two slow

variables, and canards are special solutions that characterize the local dynamics. Pinching

yields an approximation in terms of the two-fold singularity of discontinuous (Filippov)

systems, which arises generically in three or more dimensions, and remains a subject of

interest in its own right.

The purpose of this paper is to study the relation between discontinuities and singular per-

turbations in dynamical systems. We do this by forming a discontinuous model of a well-studied

singular perturbation problem using the method of pinching introduced in [7]. A comparison of

phase portraits in the two different kinds of system, particularly in the works [4, 21, 26] and [15, 18],

reveals similarities in the dynamics associated with certain singularities. A rigorous explanation

for this similarity has not been given, however. The singular limit of a slow-fast system in [26]

indeed produces a system that is in some sense discontinuous – split into a slow timescale and a

fast timescale – but in this limit the singularity exhibited by a generic discontinuous system as in

[15] is not preserved. The method of pinching allows a qualitative relation between the two to be

formed. In particular, it provides a discontinuous model that captures, quantitatively, the intri-

cate dynamics of the continuous singular perturbation problem. The study of such singularities in

discontinuous systems predates those in singularly perturbed systems [14, 15], while the study of
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oscillatory dynamics has gone much further in singular perturbation problems [? ]. The connection

has not until now being firmly established. While our aim here is to show only that the same

dynamics bears a non-superficial similarity in the two systems, we hope this paves the way for a

more rigorous study of the discontinuous limit in singularly perturbed systems in the future.

I. INTRODUCTION

Highly nonlinear changes in the dynamics of a system can be modelled by differential equations

whose solutions vary rapidly near certain thresholds. Whether those jumps are smooth but fast

varying, or are truly discontinuous, changes the way they are treated mathematically. It is natural

to assume that a limit exists in which ‘fast-but-smooth’ becomes truly ‘discontinuous’, but how to

characterise that limit is by no means obvious.

Analytically this might not be surprising. In many cases the limit may be singular (see e.g. the

discussion in [3]), meaning solutions of the smooth system do not limit to the nonsmooth system in

a regular way. Computationally, the difficulty in studying the nonsmooth limit of smooth systems

lies in the fact that, by their very nature, they become extremely stiff and numerical methods fail

to converge in the limit of interest [16]. As a result, the relation between smooth and nonsmooth

dynamical systems theory remains poorly understood. The recent growth of nonsmooth dynamical

systems theory has produced numerous forms of discontinuity-induced singularities, bifurcations,

and chaos. It is interesting to ask whether these have any counterpart in smooth systems, where

novel behaviours have also been attributed to abrupt change. For this purpose a relation be-

tween smooth and nonsmooth is necessary. (Examples of the discontinuity-induced phenomena

of interest are sliding bifurcations [10, 11, 19], explosions [17], grazing singularities [15, 25], and

non-deterministic chaos [5]. Examples of the smooth phenomena of interest are canard explosions

[2] and mixed-mode oscillations [6, 21, 23]).

In [7], ideas from singular perturbations, nonsmooth dynamics, and nonstandard analysis, were

combined to develop a method called pinching, which approximates a fast-but-smooth change by

a discontinuity. Pinching characterises the dynamics in the nonsmooth limit at least qualitatively,

and, as we show here, even quantitatively, by preserving certain singularities and associated geom-

etry. The present paper investigates the method by applying it to a known system with slow-fast

dynamics, characterized by an invariant manifold of slow dynamics which loses normal hyperbol-

icity, taking the form of the so-called folded-node system in a singular limit. A relation between

so-called canard phenomena in smooth and nonsmooth systems is derived.
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Pinching is a way of deriving nonsmooth models that capture key geometry of singular pertur-

bation problems. While the method so-far developed does not provide a rigorous approximation

in the analytic sense, it faithfully captures singularities and bifurcations that arise when a smooth

system suffers rapid change, encapsulated in a nonsmooth differential equation, capable of provid-

ing accurate estimates of bifurcation parameters, as shown previously in a study of the van der Pol

system in [7].

In the remainder of this section we introduce the canonical model used to study the folded node,

a set of ordinary differential equations with a singular perturbation parameter ε. In section II we

apply pinching to obtain a nonsmooth system, whose phase portrait resembles the smooth system

in the singular limit ε = 0. Neither the pinched system, nor the ε = 0 singular limit of the smooth

system, accurately represent the dynamics found when ε is small but nonzero. In section III we

motivate pinching better by first making an exponential rescaling of the phase space, yielding a

system with similar qualitative features to section II; we then give numerical evidence, by means of

boundary-value problem continuation, of the continuum of canards emerging in the nonsmooth limit.

In section IV we show how this can be improved, by shifting the focus of the exponential rescaling,

and pinching again. This second approximation possesses more intricate dynamics, which we show

is in one-to-one correspondence with solutions of the smooth system for ε 6= 0. We make some

closing remarks in section V, including a simple smoothing of the pinched system from section II

that shows how the number of canards in a flow increases, through a series of bifurcations, as a

change at some threshold becomes sharper and tends towards discontinuous.

We begin with a slow-fast system whose key features can be considered fundamental to the

understanding of the canard phenomenon. The system is a set of ordinary differential equations

for two slow variables, x and y, and a fast variable, z. (Some features of these systems can be

generalised to arbitrarily many fast and slow variables, see [4, 27]). The timescale separation is

introduced by a parameter ε satisfying 0 < ε ≪ 1. A general such system can be written

ẋ = g1(x, y, z; ε) ,

ẏ = g2(x, y, z; ε) ,

εż = h(x, y, z; ε) ,

(1)

in terms of smooth functions h, g1, and g2, where the dot denotes differentiation with respect to

the (slow) time t. For |h| > ε, it is easy to see that ż is much larger than ẋ and ẏ, so on the fast

timescale solutions are attracted to, or repelled from, an ε-neighbourhood of the null surface of the
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fast variable,

C0 := {h(x, y, z, ε) = 0} , (2)

known as the critical manifold; see figure 1. As shown by Fenichel [13], within that neighbour-

hood lie (generally non-unique) perturbations of the critical manifold, called the slow manifolds,

hypersurfaces which are (locally) invariant in the flow, and are hyperbolically attracting or repelling

provided that ∂h/∂z 6= 0. Recall that the notion of local invariance means that solutions can leave

a slow manifold only at its boundary, if one exists [20].

x

z

fold

y

C0

Figure 1: Critical manifold C0, and dynamics away from the fold (the y-axis). Solutions evolve quasi-vertically on the

fast timescale (double arrows) to/from the ε-neighbourhood of the critical manifold, where the slow timescale dominates

(single arrows).

Normal hyperbolicity of the critical manifold is lost if ∂h/∂z vanishes. This scenario occurs

generically in three dimensions when there is a fold in C0 with respect to the flow (see figure 1),

defined by the conditions

h =
∂

∂z
h = 0, (3)

{

∂

∂x
h,

∂

∂y
h

}

6= 0 6= ∂2

∂z2
h, (4)

where the inequalities ensure that the critical points along h = 0 are indeed folds, and not higher

order degeneracies. A singularity of the flow forms if its projection onto the x-y plane is not

transverse to the fold, which occurs if

h = (g1, g2) ·
(

∂

∂x
,
∂

∂y

)

h = 0 . (5)

The three conditions in equation (3) and equation (5), subject to non-degeneracy conditions (4),

define an isolated point, which we can place at the origin (x, y, z) = (0, 0, 0) for ε = 0, where the
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system can be transformed into the local canonical form [24]

ẋ = by + cz + O
(

x, ε, y2, yz, z2
)

,

ẏ = 1 + O (x, y, z, ε) ,

εż = x+ z2 + O
(

εx, εy, εz, ε2, x2z, z3, xyz
)

.

(6)

From now on we omit higher order terms. In doing so we must take care, for we can scale ε

out of the leading order terms by sending {x, y, z, t} 7→ {xε, y√ε, z
√
ε, t

√
ε} (following [26]), or

{x, y, z, b, c} 7→
{

xε2, y, zε, bε2, cε
}

, and while the result is a formally correct leading order system,

the ε-orders of the new variables (x, y, z, t) must be considered in any subsequent approximation.

Since the order of certain quantities is essential here, we do not make such a substitution at this

stage.

A. Projection onto the critical manifold

This paper presents a method for characterising slow-fast dynamics for a system with small ε,

without taking ε to zero. The more common method of studying a system such as (6) involves

first taking the singular limit, ε = 0, and subsequently considering ε > 0 as a perturbation. Some

features of the singular limit will appear in a different guise (for ε 6= 0 in fact) in our nonsmooth

approach later, so let us review these here.

Setting ε = 0 (and neglecting higher order terms) reduces system (6) to a differential-algebraic

equation

ẋ = by + cz ,

ẏ = 1 ,

0 = x+ z2 ,

called the reduced system, see e.g. [24]. This system is restricted to the critical manifold C0, on

which h = x+ z2 = 0. This flow therefore satisfies ḣ = 0 which, using system (6), gives

0 = ḣ = by + cz + 2zż ⇒ ż = −by + cz

2z
.

Combining this with the second component ẏ = 1 from system (6) yields a dynamical system on

C0, given by





ẏ

ż



 =
−1

2z





0 −2

b c









y

z



 . (7)
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This system is undefined at y = z = 0 but, importantly, arbitrarily close to this point the righthand

side of equation (7) is generally nonzero. The local phase portrait is determined by the 2 × 2 in

equation (7), whose trace and determinant are respectively

λ1λ2 = 2b and λ1 + λ2 = +c , (8)

where λ1,2 are solutions of the characteristic equation 0 = λ2−cλ+2b, assigned such that |λ1| ≥ |λ2|.
Let µ = λ2/λ1. The singularity is then classified (see for example [24]) as:

a folded node if µ > 0 , ( λ1λ2 > 0 ) (9)

a folded saddle if µ < 0 , ( λ1λ2 < 0 ) (10)

a folded focus if µ ∈ C . ( λ1 = λ∗
2 ) (11)

The three cases are illustrated in figure 2. Their names reflect the fact that, if we omit the prefactor

−1/2z from equation (7), the remaining linear system




ẏ

ż



 =





0 −2

b c









y

z





has an equilibrium at the origin, and this is a node if µ > 0, a saddle if µ < 0, or a focus if µ ∈ C. The

term ‘folded’ is required because this linear system is topologically, but not dynamically, equivalent

to equation (7), being obtained from it by a time scaling t 7→ −t/2z. This scaling changes sign with

z, and is singular at z = 0. As a result, the dynamics is similar in z < 0 on the attracting branch

of the critical manifold C0, and is similar up to time-reversal in z > 0 on the repelling branch of C0.

The singularity of the scaling at z = 0 means that the equilibrium of the linear system is not an

equilibrium of equation (7), instead referred to as a folded equilibrium, which, unlike an equilibrium,

solutions can cross through in finite time. Solutions of equation (7) that cross through y = z = 0

are shown in figure 2, with infinitely many in (i), only two in (ii), and none in (iii). Those that

pass from z < 0 to z > 0 through the folded node or folded saddle correspond to canards, which

are discussed in the next section.

The classification into folded node/saddle/focus, for different values of µ, is also used to classify

the system (6) for ε nonzero. The remainder of this paper will be concerned solely with the

folded node case, µ > 0. Substituting µ = λ2/λ1 and equation (8) into equation (6), then scaling

(x, y, z, t, ε) 7→ (x/λ2
1, y/λ

2
1,−z/λ1, t/λ

2
1,−ε/λ3

1), gives to leading order

ẋ = µ
2 y − (1 + µ)z ,

ẏ = 1 ,

εż = x+ z2 .

(12)
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folded
node

(i) (ii) (iii)

folded
saddle

folded
focus

Figure 2: Projected onto the critical manifold, the flow is a singular scaling of (or a folded) (i) node, (ii) saddle, or (iii)

focus.

Since much of the foregoing analysis will involve a natural length scale |h| = ε, for convenience we

define a new function

u(x, y, z; ε) = h(x, y, z; ε)/ε , (13)

then in the variables {u, y, z}, the system (12) becomes

εu̇ = µ
2y−(1 + µ)z + 2zu ,

ẏ = 1 ,

ż = u .

(14)

The remainder of the paper is a study of this system for µ > 0 and ε > 0. Before we apply pinching

to this system, we must state some preliminaries concerning the so-called canard type solutions that

make it so interesting.

B. Canards

Throughout this paper we define a canard as a solution that evolves from an attracting invariant

manifold, to a repelling invariant manifold, via whatever singularity is necessary for the transition.

In the traditional setting of a smooth system with slow and fast timescales, the invariant manifolds

are surfaces of slow dynamics, as we introduce in equation (15) below. In the setting of discontinuous

systems as we introduce in section II, the invariant manifolds are regions where solutions slide along

the discontintuity set (called the switching manifold). Strictly speaking, we use the term ‘canard’

exclusively for maximal canards, which are the solutions of the types above that spend the maximum

possible time on the repelling invariant manifold. In the setting described in this paper, this time

in infinite.

For real µ and noting |µ| < 1 by definition, the directions z/y = µ/2 and z/y = 1/2 lie along

the weak and strong eigendirections associated with the folded equilibrium of equation (7). The
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solutions along these directions are canards, known as the weak and strong singular canards of the

singular (ε = 0) system.

The non-singular (i.e. ε 6= 0) system (14) also has two particular solutions satisfying z/y = µ/2

and z/y = 1/2. We label these γwk,st = {u(t), y(t), z(t)}, and solve equation (14) to find

γwk(t) =
{µ

2
, t,

µ

2
t
}

, γst(t) =

{

1

2
, t,

1

2
t

}

. (15)

These solutions are canards, since as t → ±∞ they lie in an ε-neighbourhood of the attracting and

repelling branches of the critical manifold, implying that they tend towards attracting and repelling

slow manifolds. They form simple curves that are ε-close to the weak and strong canards of the

singular system, therefore we call γwk the weak primary canard, and γst the strong primary canard,

(though where possible without ambiguity we omit the word ‘primary’).

It is clear from the local phase portrait (see figure 2(i)) that, besides these, the singular system

contains a whole family of canard solutions through the singularity, forming a continuum between

the weak and strong solutions. For the non-singular (0 < ε ≪ 1) system, as well as the weak

and strong primary canards, there may exist a number of other canards, termed secondary canards,

though unlike the singular system they will generally be finite in number, and of a more complicated

topology (see for example [9, 26]). Secondary canards have been shown [9, 26] to rotate around

the weak (primary) canard near the origin, and to asymptotically align with the strong (primary)

canard as t → ±∞, as sketched in figure 3. They are neither easy to express in closed form, nor

easy to simulate numerically. To study secondary canards analytically, Wechselberger [26] applies a

parameter blow-up, then moves to cylindrical coordinates centred on the weak canard, and takes the

variational equation along the weak canard to obtain a Weber equation, whose solutions describe

the small oscillations that the secondary canards make around the weak canard. In this paper we

derive an approximation by pinching the ε-neighbourhood of the critical manifold onto the manifold

itself, to obtain a nonsmooth system.

For ε nonzero, a first approximation for the slow manifolds is that they lie in an ε neighbourhood

of the critical manifold. A better approximation, and one we will use later, is to note that the slow

dynamics lies not on, but is stationary with respect to, the critical manifold, and hence lies close

to (actually in an ε2-neighbourhood of) the nullcline u̇ = 0. Solving u̇ = 0 in equation (14) gives

the surface

Py =

{

(u, y, z) ∈ R
3 : u =

µ+ 1

2
− µy

4z

}

. (16)

These two approximations (ε-close to C0 and ε2-close to Py) must be consistent, that is, the sur-

face Py can only approximate a slow manifold where it lies in the ε-neighbourhood of the critical
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weak 
canard

γwk γst

secondary
canard

strong
canard

h

ε

(i)

−ε

0

−2ε

z
−1 10

(ii)

γst

γwk

Figure 3: (i) Primary and secondary canards in the neighbourhood of the critical manifold. Secondary canards connect

an ε-neighbourhood of the attracting and repelling branches of the critical manifold, their tails lying parallel to the strong

(primary) canard γst. Near the singularity they rotate around the weak (primary) canard γwk. (ii) The flow circulating

around the weak canard: simulation of equation (14) in the plane y = −1.

manifold. In this neighbourhood Py is approximated by

P0 =
{

(u, y, z) ∈ R
3 : u = (µ + 1)/2

}

, (17)

and for this to lie within ε of the critical manifold, which corresponds to the region |u| < 1, we

must clearly have |(µ + 2)/2| < 1. Combining this with the folded node condition µ > 0 gives the

range of permitted values for the parameter µ as

0 < µ < 1. (18)

This motivates the choice we made earlier of defining µ as λ2/λ1 rather than its reciprocal. As

an illustration of the condition above, note that the weak and strong canards are two particular

solutions that lie on the slow manifolds. These lie on Py because their distances u from the critical

manifold are fixed at u = µ/2 and u = 1/2, and moreover |µ| < 1 guarantees that both of these lie

in the required neighbourhood, since |µ/2| < 1 and |1/2| < 1.

II. PINCHING (SANS MICROSCOPE)

Pinching, at least in the form used here, was introduced in [7]. To illustrate the method, we

first demonstrate it in its crudest form. Essentially, we assume the system is dominated by fast

dynamics for |u| > 1, which we leave untouched. We assume that slow dynamics dominates in
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|u| < 1, in such a way that dynamics in the u direction can be neglected, so we collapse the entire

neighbourhood |u| < 1 onto the critical manifold u = 0.

The ‘pinch‘ is enacted by a nonsmooth transformation of the variables, in this case introducing

a new variable

U = u− sign(u) , (19)

for |u| > 1, and ignoring |u| < 1. The equations (14) then become a piecewise smooth system

εU̇ = µ
2y − (µ + 1)z + 2z sign(U) + O (zU) ,

ẏ = 1 ,

ż = sign(U) .

(20)

where

sign(U) ∈







U/|U | if U 6= 0,

[−1,+1] if U = 0.
(21)

The dynamical theory of such differential inclusions derives from Filippov’s work [15]. For U 6= 0,

equation (19) specifies the fast dynamics uniquely. On U = 0, called in nonsmooth dynamics the

switching manifold, the righthand side is set-valued. The dynamics it gives rise to, however, is

rather simple to describe.

Consider a point p on the switching manifold, so U |p = 0. If U̇ is nonzero there and its sign does

not change with the sign of U , then p is the arrival point of a solution lying on one side of U = 0,

and the departure point of a solution lying on the other side. Concatenating the two solutions gives

a unique, continuous but non-differentiable, solution, that crosses the switching manifold at p. This

take place on U = 0 where 4z2 <
(µ
2 y − (µ+ 1)z

)2
(the ‘bow-tie’ region in figure 4).

If U̇ changes sign at p then the flow cannot cross through the switching manifold there. Two

solutions of equation (19) meet at p, each arriving from either side of U = 0, or each departing

(the upper and lower regions on U = 0 in figure 4). They occupy the regions on U = 0 where

4z2 >
(µ
2 y − (µ+ 1)z

)2
. The region U = 0 < z < 4z2 −

(µ
2 y − (µ + 1)z

)2
attracts the flow outside

the switching manifold, while the region z < U = 0 < 4z2 −
(µ
2 y − (µ+ 1)z

)2
repels it. These are

the pinched approximations of a point p on the attracting and repelling slow manifolds, respectively,

of system (14). To find the flow on them we solve as we did for the slow flow projected onto u = 0

in section I A, fixing 0 = U̇ = µ
2 y − (µ+ 1)z + 2zż. Solving for ż gives dynamics on U = 0 defined

by




ẏ

ż



 =
−1

2z





0 −2

µ
2 −(µ+ 1)









y

z



 . (22)
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We say that system (22) defines sliding dynamics on U = 0, and its solutions are known as sliding

orbits. This is clearly sensible as an approximation of the slow dynamics, since it is equal to

equation (7), which describes the original system projected onto the critical manifold.

Finally, notice what happens at the boundaries of the regions of sliding and crossing, where

µ
2y − (µ + 1)z ± 2z = U = 0. The field in U > 0 is tangent to the switching manifold along

µ
2y− (µ+1)z +2z = 0, and curves away from the manifold since it satisfies Ü = µ

2 − (µ+1)+ 2 =

1 − µ
2 > 0. Thus the flow in U > 0 at such points carries a solution away from the switching

manfiold. The field in U < 0 is tangent to the switching manifold along µ
2y − (µ + 1)z − 2z = 0,

and curves towards the manifold since Ü = µ
2 + (µ + 1) + 2 = 3(µ2 + 1) > 0, so solutions can only

enter the switching manifold at such points.

All this gives the simple dynamical portrait shown in figure 4. A feature of this approximation is

that it contains solutions corresponding to the weak and strong canards, and a continuum of other

canards between them. Evidently, recalling section I B, we have found an approximation where the

sliding dynamics appears to represent the continuum of canards that exist in the smooth system’s

singular limit ε = 0. But the pinched system also allows crossing of the switching manifold, which

the singular (ε = 0) smooth system does not, so it can only apply to ε 6= 0. It will emerge that the

correct canard structure can be captured by modifying the pinch slightly (looking ahead, we do this

by pinching around the surface (17) instead of the critical manifold). In section III we re-consider

the approximation above, inserting a preparatory step (a “microscope") that more fully motivates

the process of pinching, before changing the focus of the microscope and the pinch to capture the

correct secondary canard structure in section IV.

X

z

U

y
y

z

Figure 4: Pinched system, in (U, y, z) coordinates (left) and corresponding (X, y, z) coordinates (right) if X = x−sign(x).

The upper and lower regions are the repelling and attracting sliding regions, separated by a ‘bow-tie’ made up of crossing

regions.
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III. FIRST APPROXIMATION: A CONTINUUM OF CANARDS

The microscope, introduced in the context of nonstandard analysis [2], is an exponential

(smooth) scaling of variables that attempts to resolve the interaction between slow and fast dy-

namics. Let

v = u[ε] := |u|εsign u , (23)

in terms of which equation (14) becomes

v̇ = v
{

2z +
(µ
2y − (µ + 1)z

)

v−1/[ε]
}

,

ẏ = 1 ,

ż = v1/[ε] .

(24)

This is simulated in figure 5(i). The weak and strong canards now satisfy v1/[ε] = z/y = µ/2 and

v1/[ε] = z/y = 1/2 respectively (by direct calculation). The projection onto v = 0 gives the same

y-z system (22) (or equivalently (??)) as before the microscope.

For |v| < 1 and ε ≪ 1, the flow of system (24) is dominated by the term v
1− 1

[ε] in the equation

for v̇, and so lies close to a set of fibres with constant y and z, connecting the surfaces v = ±1. To

approximate this, we pinch the two surfaces v = ±1 together using the transformation

V = v − sign v (25)

for |v| > 1, giving the system

V̇ = (V + signV )
{

2z +
(µ
2y − (µ+ 1)z

)

(V + signV )−1/[ε]
}

,

ẏ = 1 ,

ż = (V + signV )1/[ε] ,

(26)

as simulated in figure 5(ii). Note that prior to pinching, both the weak and strong canards lie inside

the region |v| < 1, therefore they are not part of the system (26) for V 6= 0. Instead, they now lie

on the switching manifold V = 0. At the switching manifold, V = 0, equation (26) reduces to

V̇ = µ
2 y − (µ+ 1)z + 2z signV ,

ẏ = 1 ,

ż = signV ,

(27)

which is equivalent to system (20) up to an ε scaling in y, z, t. The crossing and sliding dynamics

on the switching manifold are therefore exactly as described in equation (22) for system (20). The
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microscope, given by the transformation u 7→ v, provides the motivation for the pinch u 7→ V .

The result is a system of ‘fast’ dynamics for V 6= 0 given by equation (26), and slow dynamics

that either crosses the sliding manifold, or slides along it as described in equation (22) for system

(20). An immediate consequence is that, similar to the previous section when the pinch was applied

without a microscope, pinching here gives a continuum of canards solutions. In the next section

the microscope is used more powerfully, to resolve the different canards.

v

0

z
−1

−1

1

1

0

V

pinch
0

z
−1

−0.1

1

0.1

0

(i) (ii)

γst

γst

γwk

γwk

Figure 5: The microscope and pinch. (i) Flow in the microscope system (24) simulated in the plane y = −1 with ε = 0.05

and µ = 1/8.5. (ii) Flow in the system (26) obtained by pinching together the surfaces v = ±1 in (i), with the vertical

axis rescaled for clarity. The primary canards γst,wk are indicated.

z

0

y
−3

−1

1

−6 630

γst

γwk

Figure 6: Sliding flow after the pinch, given by equation (22) in the regions 4z2 <
(

µ

2
y − (µ+ 1)z

)2
on V = 0. Showing

the strong (bold) and weak (dashed) primary canards. Orbits to the right of the strong canard in the upper half space

(the repelling sliding region), and to the left of the strong canard in the lower half space (the attracting sliding region),

form a continuum of canards.
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A. Computations in the nonsmooth limit

Before resolving the secondary canards by pinching about another manifold than the critical

manifold C0, one may immediately ask whether the correct canard structure is regained from the

nonsmooth model equation (19) when we smooth out, or regularize, the discontinuity at U = 0. The

obvious way to achieve this is to replace the sign function with a steep sigmoid function. Neglecting

the O (zU) term in equation (19), we directly replace sign with

sign(U) 7→ tanh(kU) ,

for k > 0, and analyse the resulting system numerically using a technique based on the numerical

continuation of parametrised families of two-point boundary-value problems as presented in [9].

The discontinuous system (19) is obtained in the limit k → ∞, and the original smooth system

(14) is regained as k → 0.

The computations below are all made for µ = 1/8.5. Figure 7 shows attracting and repelling slow

manifolds for different values of k, found by computing solutions that pass between lines chosen on

the attracting and repelling branches of the critical manifold. Canards occur where the attracting

and repelling branches intersect transversally. The magnified images show an increasing number of

rotations around the weak canard, and an increasing number of intersections (i.e. canards), with

increasing k, that is, as the smoothing function tanh(kU) approaches sign(U).

Figure 8 shows ten branches of canards (γ1 to γ9 and γst) continued as the stiffness parameter

k varies (see [9] for details on such continuation for canards). Each point along the ten curves

corresponds to a canard, formed by transversal intersection of the the repelling and attracting

branches of slow manifolds from figure 7. The curves give the maximum value of x reached along

each canard solution (compare for example to theoretical results in [26]). The strong canard is

labeled γst, and nearby, we see the development of secondary canards, labelled γ1 to γ9, as k

increases from zero.

The number of canards initially very quickly with k at smaller values (k . 1000). Each new

branch of secondary canards emerges from one particular curve, labeled as the branch of weak

canards, γwk. This branch could not be computed for all values of k, and is partly derived from

the envelope of endpoints of the secondary canards, however its identification as the weak canard

is supported for several reasons. Primarily, only the weak canard should coexist with γst for all

parameters, and furthermore the bifurcation of secondary canard branches fits with previous results

for canards in the case of a folded node; we refer the reader to [26] for theoretical results and a
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Figure 7: Slow manifolds in a regularization of the nonsmooth system (19), plotted in the section {y = 0} for different

values of the stiffness parameter k. (i) Computations of the slow manifolds, and (ii) magnifications showing the increasing

numbers of intersections with increasing k. Each intersection of the slow manifolds corresponds to a canard. (Colour

online indicates the repelling (blue) and attracting (red) slow manifolds).
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Figure 8: Branches of canards in a regularization of the nonsmooth system (19). For valid canard solutions, the maximum

value of x reached along the canard is plotted against the stiffness parameter k. The strong canard (γst), weak canard

(γwk), and several secondary canards (γ1-γ9) are identified.

sketch of the expected bifurcation diagram, and to [? ] for a computed bifurcation diagram.

Although only the first nine secondary canards are identified here, these computations suggest a
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trend towards infinitely many canards in the nonsmooth limit. This scenario fits with the approx-

imation (26) obtained by pinching, suggesting that the nonsmooth system (26) can be considered

as an approximation of the smooth system (14), in the limit where small ε leads to an increasingly

sharp jump in dynamics near the critical manifold. Even allowing for canards beyond those counted

here, figure 8 is expected to be incomplete, since for large k (k & 1000) additional canard branches

were detected in computations, born through folds instead of from the branch of weak canards,

whose identity it currently unclear. One can ask how these various features depend on the form

of the sigmoid function that replaces sign(U), and whether they are represented in any way in the

nonsmooth system. These are interesting problems for further study, with particular relevence to

the study of uniqueness in regularizing nonsmooth system. For the present paper, we now return

to developing the pinch approximation.

IV. SECOND APPROXIMATION: ROTATING CANARDS

The exponential scaling in the previous section attempts to resolve the slow dynamics in the

neighbourhood of the critical manifold u = 0. However, after the microscope on u = 0, the flow

is still seen to evolve fast towards another surface, the nullcline u̇ = 0. An improvement on this

method is therefore to take a new microscope and pinch, centred on this new surface.

The nullcline where u̇ = 0 is given by Py in equation (16). Since this is not well defined at z = 0,

we approximate it by P0 given by equation (17), and take a microscope on P0, by introducing a

new variable

w =

(

u

ε
− 1 + µ

2ε

)[ε]

, (28)

in terms of which the dynamical system (14) becomes

ẇ = w
{

2z + µy
2εw

−1/[ε]
}

,

ẏ = 1 ,

ż = εw1/[ε] + 1+µ
2 .

(29)

This is simulated in figure 9(i). The weak and strong canards now satisfy {w, z} = {−1/(2ε)ε, µy/2}
and {w, z} = {−(µ/2ε)ε, y/2}, respectively.

The nullcline ẇ = 0 is the curve

Qy =

{

(w, z) ∈ R
2 : w = −

( µy

4zε

)[ε]
}

. (30)
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The flow projection onto w = 0 has yet again the same y-z system as before, namely equation (22).

However, the difference in the nullcline Qy as apposed to Py gives different dynamics, as will be

captured by the pinch.

Slow dynamics in this second approximation is seen numerically to dominate in an ε2 neigh-

bourhood of the nullcline ḣ = 0, which corresponds to |u − µ+1
2 | < ε or |w| < 1. In the first

approximation of section III, slow dynamics is observed to dominate in an ε-neighbourhood of the

critical manifold, |h| < ε, which corresponds to |u| < 1 or |v| < 1. An analytic explanation of why

the slow neighbourhood is of order ε around the critical manifold, and ε2 around its associated

nullcline, is outside the scope of the current paper, but deserves attention in future work.

The pinch is now enacted similarly to the previous section, by introducing a new variable W =

w − sign w, which gives

Ẇ = (W + signW )
{

2z + µy
2ε (W + signW )−1/[ε]

}

,

ẏ = 1 ,

ż = ε(W + signW )1/[ε] + 1+µ
2 ,

(31)

as shown in figure 9(ii).
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γst

γwk

γst γwk

Figure 9: The second microscope and pinch. (i) Flow in the microscope system (29) simulated in the plane y = −1 with

ε = 0.05 and µ = 1/8.5. (ii) Flow in the system (31) obtained by pinching together the surfaces w = ±1 in (i), with the

vertical axis rescaled for clarity. The primary canards γst,wk are indicated.

The sliding flow is superficially given by the usual equation (22), as is found by solving for

Ẇ = 0 on W = 0. Crutially, however, we must consider the arrangement of the tangencies Ẇ = 0

on W = 0, which give the boundaries of the sliding regions. The W > 0 and W < 0 subsystems in

equation (31) are tangent to the switching manifold where Ẇ reaches zero as W approaches zero
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from above or below. These tangencies lie along z
y = − µ

4ε signW , hence the sliding regions are found

to be given by

|z/y| > µ/4ε on W = 0 , (32)

illustrated in figure 10 for different values of µ.
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w

Figure 10: Sliding flow after the second pinch, given by equation (22) in the regions |z/y| > µ/4ε on W = 0, for

ε = 0.05. In (i) there are no canards for µ = 1/4, and in (ii) the strong canard can be seen in the sliding flow for

µ = 1/16. Inset: the strong canard in the microscope system falls inside the pinch region in (ii) but not in (i).

The curvature of the flow [8] is specified by the second derivative, Ẅ = (1 ± 2ε)(µ ± 2ε)/2ε.

Since we have 0 < µ < 1 and 0 < ε ≪ 1, the flow in W > 0 satisfies Ẅ = (1 + 2ε)(µ + 2ε)/2ε > 0

on its tangency line z/y = µ/4ε, and hence curves away from the switching manifold. The flow in

W < 0 satisfies Ẅ = (1− 2ε)(µ− 2ε)/2ε on its tangency line z/y = −µ/4ε, and hence curves away

from the switching manifold if µ < 2ε, and towards it if µ > 2ε. Although we are interested in

arbitrarily small ε, either of these can be satisfied for small enough µ.

This happens because the weak eigendirection of equation (22) lies outside the sliding region.

The strong eigendirection lies inside the sliding regions if µ > 2ε, or outside the sliding regions if

µ < 2ε, meaning that in the former case the sliding dynamics captures no canards, and in the latter

captures a single canard. (This is immediately in contrast to the continuum of sliding canards in

system (27)). The two different cases are shown in figure 10.

The weak and strong canards in the unpinched system lay at {w, z} = {−1/(2ε)ε, µy/2} and

{w, z} = {−(µ/2ε)ε, y/2} respectively. The weak canard clearly avoids the pinch region |w| < 1 for

ε < 1/2, and then lies at {W, z} = {1− 1/(2ε)ε, µy/2}. The strong canard also avoids the pinch
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region if µ > 2ε, and is given by {W, z} = {1− 1/(2ε)ε, y/2}. If µ < 2ε the strong canard falls

inside the pinch region and is not part of system (31) for W 6= 0; if it exists it is part of the sliding

dynamics on W = 0. Indeed we see that is exactly the case in figure 10.

A. Linearizing about the weak canard

We complete this study by showing that the pinched approximation of the folded node possess

〈1−µ
2µ 〉 secondary canards, where 〈n〉 denotes the largest integer less than n. These canards rotate

around the weak canard near y = 0, with rotation numbers taking all integers from 1 to 〈1−µ
2µ 〉,

then connect to sliding solutions in the attracting and repelling sliding regions that take them to

y → ±∞, as sketched in figure 11. Note that the rotation takes place in W < 0, therefore secondary

canards satisfy W ≤ 0.

γ
wk

γ
st

W

y

z

Figure 11: Primary canards (dashed) and a secondary canard (bold) with rotation number 3 in the pinched (W, y, z)

system.

To solve system (31) we treat the W > 0 and W < 0 systems separately, making different

approximations in the two regions about the dominant singularities. In the region W < 0, we

linearize about the weak canard at {W, z} = {1− (2ε)−ε, µy/2}. In the region W > 0, we expand

about the tangency to the switching manifold at (W, z) = (0,−µy/4ε). To leading order these give

in W > 0 :



















Ẇ = µy+4zε
2ε + O (W ) ,

ẏ = 1,

ż = ε+ 1+µ
2 + O (W ) ,

(33)
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in W < 0 :



















Ẇ = µy−2z
(2ε)ε + µy

ε (W − 1 + 1
(2ε)ε ) + O

(

δW 2, εδzδW
)

,

ẏ = 1,

ż = µ
2 + (2ε)ε−1(W − 1 + 1

(2ε)ε ) + O
(

δW 2
)

,

(34)

where δW = W − 1 + (1/2ε)ε and δz = z − µy/2. In the remainder of this section we omit the

error terms, and find solutions to the truncated local equations. Note that

1/(2ε)ε ≈ 1− ε log(2ε) +O
(

(ε log 2ε)2
)

,

deviates quickly from unity as ε increases from zero, so we cannot approximate it by unity. Ap-

proximating around the weak canard in W < 0 leads to a slight shift in the sliding region (32). The

boundary where the W > 0 system is tangent to W = 0 is given, as before, by z/y = −µ/4ε. The

boundary where the W < 0 system is tangent to W = 0 is now given by

z/y = µ(ε− 1 + (2ε)ε)/2ε . (35)
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Figure 12: The pinched system (i) and the expansion (33)-(34). Flow simulated in the plane y = −1 for ε = 0.05,

µ = 1/8.5. The dotted curves show the nullcline Ẇ = 0.

Let us now find the canards in this approximation. We will consider only that satisfy the

following properties:

C1. y(0) = z(0) = 0. Because the system (34)-(33) is symmetric under the substitution {y, z, t} 7→
{−y,−z,−t}, and canards to satisfy W = 0 as t → ∞ and t → −∞, canards are expected

to inherit this symmetry, implying that y = z = 0 at t = 0.

C2. Ẅ (tc) < Ẇ (tc) = W (tc) = 0 at some t = tc 6= 0. This is because the conditions W = Ẇ = 0

define the boundary of the sliding region (equation (35)), at which solutions can pass between
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W < 0 and the invariant sliding region on W = 0. They can only do so if the solution is

curving into (Ẅ < 0) the region W < 0.

We must then find solutions of the W < 0 system that satisfy these two conditions. Considering

system (34) we have, noting ż = dz/dy = dz/dt,

z̈ =
1

(2ε)1−ε
Ẇ =

µy − 2z

2ε
+

µy

ε
(ż − µ

2
) .

Letting z = ζ + µy/2 and y = τ
√

ε/µ, this rearranges to the Hermite equation

ζ ′′ − τζ ′ +
1

µ
ζ = 0 , (36)

whose general solution can be written

ζ(τ) = τζ ′(0) 1F1

(

µ− 1

2µ
,
3

2
,
τ2

2

)

+ ζ(0) 1F1

(

− 1

2µ
,
1

2
,
τ2

2

)

,

with derivative

ζ ′(τ) = ζ ′(0) 1F1

(

µ− 1

2µ
,
1

2
,
τ2

2

)

− τζ(0)

µ
1F1

(

1− 1

2µ
,
3

2
,
τ2

2

)

,

in terms of the confluent hypergeometric function 1F1 (also known as Kummer’s function M where

1F1(α, β; γ) = M(α, β, γ), see [1]).

Applying condition C1 above, at a point where y(0) = z(0) = 0 we have Ẇ (0) = 0, hence

z̈(0) = 0. In the transformed coordinates this gives initial conditions

ζ(0) = 0, ζ ′′(0) = 0 ,

the former of which simplifies the solution above to

ζ(τ)

ζ ′(0)
= τ 1F1

(

µ− 1

2µ
,
3

2
,
τ2

2

)

,
ζ ′(τ)

ζ ′(0)
= 1F1

(

µ− 1

2µ
,
1

2
,
τ2

2

)

, (37)

or in terms of the Gamma function Γ and Hermite polynomials Hn [1],

ζ(τ) =
iζ′(0)eτ

2/4Γ(µ+1

2µ )
√

π

(

i
Γ( µ+1

2µ )
Γ(− 1

2µ )
+

Γ( 2µ+1
2µ )

Γ( µ−1

2µ )

)

{

Γ( 2µ+1

2µ )
Γ(µ−1

2µ )
D+ (1, µ, iτ)−D+ (0, µ, τ)

}

,

where

D± [m,µ, τ ] = 2±(µ+2)/2µe−τ2/4Hm∓1/µ

(

τ√
2

)

.
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(This expression is carefully written to evaluate to a finite value at certain values of µ where the

individual Gamma functions may be infinite). Substituting back in τ = t
√

µ/ε, we find that in

W < 0 there exist solutions given by

W (t) = 1− (2ε)−ε(1 + εµ− 2εż(0)1F1

(

µ−1
2µ , 12 ,

µt2

2ε

)

) ,

y(t) = t ,

z(t) = µt
2 + tż(0) 1F1

[

µ−1
2µ , 32 ,

µt2

2ε

]

,

(38)

and these form the portions of any secondary canards that lie in W < 0, outside the switching

manifold. To this we must apply the second condition, C2, to pick out solutions in system (38) that

tangentially touch (or graze) the boundaries of the sliding regions on W = 0, where they connect to

sliding solutions that form the tails of the canards. Substituting the conditions W (tc) = Ẇ (tc) = 0

at some t = tc 6= 0 into equation (34), we find that z(tc) and ż(tc) are given by

z(tc)/µtc = ż(tc) + ε(1− µ)/2ε = (1 + ε− (2ε)ε)/2ε . (39)

Figure 13 shows a simulation of solutions given by system (38) subject to the boundary conditions

(39).

The number and geometry of the secondary canards, specifically the number of rotations they

make around the weak canard, are easily found as follows. The confluent hypergeometric function

1F1(−a, b, c) has 2〈a + 1〉 real zeros [1] (with 〈n〉 denoting the largest integer smaller than n),

between which the function oscillates through 2〈a+1〉− 1 maxima/minima, and between these the

functions makes 〈a〉 complete oscillations. These oscillations form the rotations of the secondary

canards.

Using the boundary conditions W (tc) = Ẇ (tc) = 0, a given value of tc > 0 picks out one

of the solutions (38), with 〈1−µ
2µ 〉 rotations. The boundary conditions may be satisfied at any

one of the maxima, so any of the rotation numbers from 1 up to 〈1−µ
2µ 〉 are obtained, by different

solutions with unique values of tc. Hence there exist 〈1−µ
2µ 〉 secondary canards with rotation numbers

1, 2, 3, ..., 〈1−µ
2µ 〉.

As a final remark, from Abramawitz and Stegun Eq.13.5.14 [1], the complicated expressions

above can be simplified with the large parameter asymptotic approximation

1F1 (a,b,x) =
Γ(b)
√

π

(

x
2 (b − 2a)

)(1−2b)/4
ex/2 cos

(

√

2x(b− 2a) + π
4 (1− 2b)

)

. (40)

This is sufficient to approximate solutions for small x = τ2/2, but this exponential approximation

(compared to the exact solution in figure 13(ii)) is not accurate enough to correctly give the correct

number of, or number of windings of, secondary canards.
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Figure 13: Secondary canards for ε = 0.05 and µ = 1/8.5, from the Hermite solution (38). Inset: the Hermite solution

(full curves) is compared to the approximation using (40) (dotted curves). Long dashes indicate segments of sliding. The

weak and strong canards γwk,st are shown.

V. CLOSING REMARKS

Pinching captures the key geometry – singularities and bifurcations – necessary to provide a

discontinuous model of a singularly perturbed dynamical system. As a method of approximation it

is purely qualitative, yet it appears to accurately describe singular features such as both primary

and secondary canards in the folded node studied here. In a previous study of the van der Pol

oscillator [7], pinching was also shown to capture the maximal canard, and to distinguish between

a canard explosion and a Hopf bifurcation.

Our main aim with this work is to help illuminate the bridge between smooth and nonsmooth

models of dynamical systems, by showing how closely the phenomena of singular perturbation

and discontinuity are related. Canards in slow-fast systems have now been known for more than

three decades, having first been studied using non-standard analysis [2], and later with standard

tools such as matched asymptotic expansions and geometric singular perturbation theory [12, 20].

Canards in discontinuous system lay unannounced in the work of Filippov [14, 15] for considerably

longer. Only recently has the link between folds in critical manifolds of slow-fast systems, and the

two-fold singularity in discontinuous systems, become clear, through the methods of regularization

[22] and of pinching [7], the former applying a topological equivalence in the singular limit ε = 0,

the latter approximating the geometry for ε 6= 0.
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