564 research outputs found

    Freeness and multirestriction of hyperplane arrangements

    Full text link
    Generalizing a result of Yoshinaga in dimension 3, we show that a central hyperplane arrangement in 4-space is free exactly if its restriction with multiplicities to a fixed hyperplane of the arrangement is free and its reduced characteristic polynomial equals the characteristic polynomial of this restriction. We show that the same statement holds true in any dimension when imposing certain tameness hypotheses.Comment: 8 page

    Thermography of semiconductor lasers

    Get PDF
    Halbleiterlaser stellen mit über 70% Wirkungsgrad einzigartig effiziente Lichtquellen dar. Dennoch ist ihre zuverlässige Nutzung, insbesondere im Bereich hoher Leistungsdichten, von thermischen Limitierungen geprägt. Einen grundlegenden Beitrag zu deren physikalischen Verständnis leistet die Analyse der thermischen Eigenschaften und Degradationsprozesse solcher Bauelemente. In dieser Arbeit wird hierzu die Thermographie als innovative Analysemethode untersucht. Das Plancksche Strahlungsgesetz erlaubt die radiometrische Ermittlung der Temperatur. Die wichtige physikalische Kenngröße Emissivität wird in dieser Arbeit für Halbleiter und Halbleiterlaserstrukturen spektral gemessen und auf fundamentale physikalische Eigenschaften zurückgeführt. Auf dieser Grundlage werden methodische Aspekte der Thermographie diskutiert, welche durch den thermischen Hintergrund und die teilweise Transparenz der Halbleitermaterialien geprägt sind. Die daraus folgenden analytischen Fähigkeiten erlauben unter anderem die orts- und zeitaufgelöste Bestimmung der thermischen Eigenschaften von komplexen Hochleistungslasern unterschiedlichster Bauart. Darüber hinaus ermöglicht die Kenntnis der beteiligten thermischen Zeitkonstanten die Extraktion von lokalen Überhöhungen in der Infrarotemission, deren Zusammenhang zur Degradation der Bauelemente untersucht wird. Eine grundsätzliche Begrenzung der Ausgangsleistung ist durch einen abrupten Degradationsprozess gegeben, welcher maßgeblich durch eine Reabsorption der Laserstrahlung an der Frontfacette verursacht wird. Mithilfe einer kombinierten Thermographie-Nahfeld-Messung wird dieser Prozess orts- und zeitaufgelöst analysiert. Die Erweiterung des Messfensters zu kürzeren Wellenlängen hin erlaubt die Detektion strahlender Übergänge unter Einbeziehung von Defektzentren welche als strahlende Signaturen von graduellen Degradationsprozessen aufzufassen sind.Semiconductor lasers are unequaled efficient light sources, reaching efficiencies of more than 70%. Nevertheless, thermal limits govern their reliable application, in particular in the field of high power densities. The analysis of thermal properties and degradation processes in such devices contributes essentially to the understanding of these limits. This work exploits thermography as an innovative analytical technique for such purpose. Planck''s law allows for a radiometric detection of temperatures. In this work, the important physical parameter emissivity is measured spectrally resolved for both semiconductors and semiconductor laser structures and is related to fundamental physical properties. Based on that, methodological aspects are discussed, which are affected on the one hand by the omnipresent thermal radiation and on the other hand by the partial transparency of the semiconductor materials. The resulting analytical capacities allow, for instance, for the determination of the thermal properties of complex high-power lasers of a wide range of different designs in a spatio-temporally resolved fashion. Furthermore, does the knowledge of the involved thermal time constants allow for an extraction of localized peaks of the infrared emission that is analyzed for its relationship with device degradation. The output power of high-power devices is fundamentally limited by the catastrophic optical damage, an abrupt degradation process that is induced significantly by reabsorption of laser radiation at the front facet. This process is analyzed spatio-temporally resolved with help of a combined thermography and optical near-field technique. Extending the detection range down to shorter wavelengths allows for imaging of radiative transitions that are related to defect centers, which are interpreted as radiative signatures of gradual device degradation processes

    The human NAD metabolome: Functions, metabolism and compartmentalization

    Get PDF
    The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools

    Early Evolutionary Selection of NAD Biosynthesis Pathway in Bacteria

    Get PDF
    Bacteria use two alternative pathways to synthesize nicotinamide adenine dinucleotide (NAD) from nicotinamide (Nam). A short, two-step route proceeds through nicotinamide mononucleotide (NMN) formation, whereas the other pathway, a four-step route, includes the deamidation of Nam and the reamidation of nicotinic acid adenine dinucleotide (NAAD) to NAD. In addition to having twice as many enzymatic steps, the four-step route appears energetically unfavourable, because the amidation of NAAD includes the cleavage of ATP to AMP. Therefore, it is surprising that this pathway is prevalent not only in bacteria but also in yeast and plants. Here, we demonstrate that the considerably higher chemical stability of the deamidated intermediates, compared with their amidated counterparts, might compensate for the additional energy expenditure, at least at elevated temperatures. Moreover, comprehensive bioinformatics analyses of the available >6000 bacterial genomes indicate that an early selection of one or the other pathway occurred. The mathematical modelling of the NAD pathway dynamics supports this hypothesis, as there appear to be no advantages in having both pathwayspublishedVersio

    Enzymatic and Chemical Syntheses of Vacor Analogs of Nicotinamide Riboside, NMN and NAD

    Get PDF
    It has recently been demonstrated that the rat poison vacor interferes with mammalian NAD metabolism, because it acts as a nicotinamide analog and is converted by enzymes of the NAD salvage pathway. Thereby, vacor is transformed into the NAD analog vacor adenine dinucleotide (VAD), a molecule that causes cell toxicity. Therefore, vacor may potentially be exploited to kill cancer cells. In this study, we have developed efficient enzymatic and chemical procedures to produce vacor analogs of NAD and nicotinamide riboside (NR). VAD was readily generated by a base-exchange reaction, replacing the nicotinamide moiety of NAD by vacor, catalyzed by Aplysia californica ADP ribosyl cyclase. Additionally, we present the chemical synthesis of the nucleoside version of vacor, vacor riboside (VR). Similar to the physiological NAD precursor, NR, VR was converted to the corresponding mononucleotide (VMN) by nicotinamide riboside kinases (NRKs). This conversion is quantitative and very efficient. Consequently, phosphorylation of VR by NRKs represents a valuable alternative to produce the vacor analog of NMN, compared to its generation from vacor by nicotinamide phosphoribosyltransferase (NamPT).publishedVersio

    Kinetic and oligomeric study of Leishmania braziliensis nicotinate/ nicotinamide mononucleotide adenylyltransferase

    Get PDF
    Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme involved in REDOX reactions and oxidative stress defense systems. Furthermore, NAD is used as substrate by proteins that regulate essential cellular functions as DNA repair, genetic, and signal transduction, among many others. NAD biosynthesis can be completed through the de novo and salvage pathways, which converge at the common step catalyzed by the nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT EC: 2.7.7.1/18). Here, we report the kinetic characterization of the NMNAT of Leishmania braziliensis (LbNMNAT), one of the etiological agents of leishmaniasis, a relevant parasitic disease. The expression and homogeneous purification of the recombinant 6xHis-LbNMNAT protein was carried out and its kinetic study, which included analysis of Km, Vmax, Kcat and the equilibrium constant (KD) for both the forward and reverse reactions, was completed. The oligomeric state of the recombinant 6xHis-LbNMNAT protein was studied through size exclusion chromatography. Our results indicated the highest and lowest Km values for ATP and NAD, respectively. According to the calculated KD, the pyrophosphorolytic cleavage of NAD is favored in vitro. Moreover, the recombinant 6xHis-LbNMNAT protein showed a monomeric state, although it exhibits a structural element involved in potential subunits interaction. Altogether, our results denote notable differences of the LbNMNAT protein in relation to the human orthologs HsNMNAT1-3. These differences constitute initial findings that have to be continued to finally propose the NMNAT as a promissory pharmacological target in L. braziliensis.publishedVersio

    The balance between NAD+ biosynthesis and consumption in ageing

    Get PDF
    Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme in redox reactions. NAD+ is also important in cellular signalling as it is consumed by PARPs, SARM1, sirtuins and CD38. Cellular NAD+ levels regulate several essential processes including DNA repair, immune cell function, senescence, and chromatin remodelling. Maintenance of these cellular processes is important for healthy ageing and lifespan. Interestingly, the levels of NAD+ decline during ageing in several organisms, including humans. Declining NAD+ levels have been linked to several age-related diseases including various metabolic diseases and cognitive decline. Decreasing tissue NAD+ concentrations have been ascribed to an imbalance between biosynthesis and consumption of the dinucleotide, resulting from, for instance, reduced levels of the rate limiting enzyme NAMPT along with an increased activation state of the NAD+-consuming enzymes PARPs and CD38. The progression of some age-related diseases can be halted or reversed by therapeutic augmentation of NAD+ levels. NAD+ metabolism has therefore emerged as a potential target to ameliorate age-related diseases. The present review explores how ageing affects NAD+ metabolism and current approaches to reverse the age-dependent decline of NAD+.publishedVersio

    Welcome to the Family: Identification of the NAD+ Transporter of Animal Mitochondria as Member of the Solute Carrier Family SLC25

    Get PDF
    Subcellular compartmentation is a fundamental property of eukaryotic cells. Communication and metabolic and regulatory interconnectivity between organelles require that solutes can be transported across their surrounding membranes. Indeed, in mammals, there are hundreds of genes encoding solute carriers (SLCs) which mediate the selective transport of molecules such as nucleotides, amino acids, and sugars across biological membranes. Research over many years has identified the localization and preferred substrates of a large variety of SLCs. Of particular interest has been the SLC25 family, which includes carriers embedded in the inner membrane of mitochondria to secure the supply of these organelles with major metabolic intermediates and coenzymes. The substrate specificity of many of these carriers has been established in the past. However, the route by which animal mitochondria are supplied with NAD+ had long remained obscure. Only just recently, the existence of a human mitochondrial NAD+ carrier was firmly established. With the realization that SLC25A51 (or MCART1) represents the major mitochondrial NAD+ carrier in mammals, a long-standing mystery in NAD+ biology has been resolved. Here, we summarize the functional importance and structural features of this carrier as well as the key observations leading to its discovery

    Identification and purification of a bovine liver mitochondrial NAD+-glycohydrolase

    Get PDF
    AbstractNonenzymatic ADP-ribosylation of mitochondrial proteins is thought to play a role in the regulation of Ca2+ efflux from mitochondria. It has been shown that intramitochondrial ADP-ribose is generated by a specific NAD+ glycohydrolase, which catalizes hydrolysis of NAD+ to ADP-ribose and nicotinamide. We purified this enzyme from bovine liver mitochondrial membranes. The final preparation had a 1660-fold purified enzyme activity and contained a main protein band with an apparent molar mass of 32,000 in a SDS-polyacrylamide gel. The identity of this protein band with NAD+-glycohydrolase was verified by renaturation of its enzymatic activity. Partial amino acid sequence information was obtained from two enzyme fragments after proteolytic cleavage of the protein band in the SDS-polyacrylamide gel. Searches in protein databases revealed that an arginine ADP-ribosyl hydrolase harbours two stretches of amino acids that are highly similar to the partial NAD+-glycohydrolase sequences
    corecore