290 research outputs found

    Negative mood reverses devaluation of goal-directed drug-seeking favouring an incentive learning account of drug dependence.

    Get PDF
    BACKGROUND: Two theories explain how negative mood primes smoking behaviour. The stimulus–response (S-R) account argues that in the negative mood state, smoking is experienced as more reinforcing, establishing a direct (automatic) association between the negative mood state and smoking behaviour. By contrast, the incentive learning account argues that in the negative mood state smoking is expected to be more reinforcing, which integrates with instrumental knowledge of the response required to produce that outcome. OBJECTIVES: One differential prediction is that whereas the incentive learning account anticipates that negative mood induction could augment a novel tobacco-seeking response in an extinction test, the S-R account could not explain this effect because the extinction test prevents S-R learning by omitting experience of the reinforcer. METHODS: To test this, overnight-deprived daily smokers (n = 44) acquired two instrumental responses for tobacco and chocolate points, respectively, before smoking to satiety. Half then received negative mood induction to raise the expected value of tobacco, opposing satiety, whilst the remainder received positive mood induction. Finally, a choice between tobacco and chocolate was measured in extinction to test whether negative mood could augment tobacco choice, opposing satiety, in the absence of direct experience of tobacco reinforcement. RESULTS: Negative mood induction not only abolished the devaluation of tobacco choice, but participants with a significant increase in negative mood increased their tobacco choice in extinction, despite satiety. CONCLUSIONS: These findings suggest that negative mood augments drug-seeking by raising the expected value of the drug through incentive learning, rather than through automatic S-R control

    Changes in urine volume and serum albumin in incident hemodialysis patients.

    Get PDF
    IntroductionHypoalbuminemia is a predictor of poor outcomes in dialysis patients. Among hemodialysis patients, there has not been prior study of whether residual kidney function or decline over time impacts serum albumin levels. We hypothesized that a decline in residual kidney function is associated with an increase in serum albumin levels among incident hemodialysis patients.MethodsIn a large national cohort of 38,504 patients who initiated hemodialysis during 1/2007-12/2011, we examined the association of residual kidney function, ascertained by urine volume and renal urea clearance, with changes in serum albumin over five years across strata of baseline residual kidney function, race, and diabetes using case-mix adjusted linear mixed effects models.FindingsSerum albumin levels increased over time. At baseline, patients with greater urine volume had higher serum albumin levels: 3.44 ± 0.48, 3.50 ± 0.46, 3.57 ± 0.44, 3.59 ± 0.45, and 3.65 ± 0.46 g/dL for urine volume groups of <300, 300-<600, 600-<900, 900-<1,200, and ≥1,200 mL/day, respectively (Ptrend  < 0.001). Over time, urine volume and renal urea clearance declined and serum albumin levels rose, while the baseline differences in serum albumin persisted across groups of urinary volume. In addition, the rate of decline in residual kidney function was not associated with the rate of change in albumin.DiscussionHypoalbuminemia in hemodialysis patients is associated with lower residual kidney function. Among incident hemodialysis patients, there is a gradual rise in serum albumin that is independent of the rate of decline in residual kidney function, suggesting that preservation of residual kidney function does not have a deleterious impact on serum albumin levels

    Estimating and Reporting on the Quality of Inpatient Stroke Care by Veterans Health Administration Medical Centers

    Get PDF
    Background—Reporting of quality indicators (QIs) in Veterans Health Administration Medical Centers is complicated by estimation error caused by small numbers of eligible patients per facility. We applied multilevel modeling and empirical Bayes (EB) estimation in addressing this issue in performance reporting of stroke care quality in the Medical Centers. Methods and Results—We studied a retrospective cohort of 3812 veterans admitted to 106 Medical Centers with ischemic stroke during fiscal year 2007. The median number of study patients per facility was 34 (range, 12–105). Inpatient stroke care quality was measured with 13 evidence-based QIs. Eligible patients could either pass or fail each indicator. Multilevel modeling of a patient's pass/fail on individual QIs was used to produce facility-level EB-estimated QI pass rates and confidence intervals. The EB estimation reduced interfacility variation in QI rates. Small facilities and those with exceptionally high or low rates were most affected. We recommended 8 of the 13 QIs for performance reporting: dysphagia screening, National Institutes of Health Stroke Scale documentation, early ambulation, fall risk assessment, pressure ulcer risk assessment, Functional Independence Measure documentation, lipid management, and deep vein thrombosis prophylaxis. These QIs displayed sufficient variation across facilities, had room for improvement, and identified sites with performance that was significantly above or below the population average. The remaining 5 QIs were not recommended because of too few eligible patients or high pass rates with little variation. Conclusions—Considerations of statistical uncertainty should inform the choice of QIs and their application to performance reporting

    The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance.

    Get PDF
    The role of autophagy, a lysosomal degradation pathway which prevents cellular damage, in the maintenance of adult mouse hematopoietic stem cells (HSCs) remains unknown. Although normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs leads to leukemia. Therefore, mechanisms protecting HSCs from cellular damage are essential to prevent hematopoietic malignancies. In this study, we crippled autophagy in HSCs by conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system. This resulted in the loss of normal HSC functions, a severe myeloproliferation, and death of the mice within weeks. The hematopoietic stem and progenitor cell compartment displayed an accumulation of mitochondria and reactive oxygen species, as well as increased proliferation and DNA damage. HSCs within the Lin(-)Sca-1(+)c-Kit(+) (LSK) compartment were significantly reduced. Although the overall LSK compartment was expanded, Atg7-deficient LSK cells failed to reconstitute the hematopoietic system of lethally irradiated mice. Consistent with loss of HSC functions, the production of both lymphoid and myeloid progenitors was impaired in the absence of Atg7. Collectively, these data show that Atg7 is an essential regulator of adult HSC maintenance

    Autocrine Activation of the MET Receptor Tyrosine Kinase in Acute Myeloid Leukemia

    Get PDF
    Although the treatment of acute myeloid leukemia (AML) has improved significantly, more than half of all patients develop disease that is refractory to intensive chemotherapy. Functional genomics approaches offer a means to discover specific molecules mediating aberrant growth and survival of cancer cells. Thus, using a loss-of-function RNA interference genomic screen, we identified aberrant expression of the hepatocyte growth factor (HGF) as a critical factor in AML pathogenesis. We found HGF expression leading to autocrine activation of its receptor tyrosine kinase, MET, in nearly half of the AML cell lines and clinical samples studied. Genetic depletion of HGF or MET potently inhibited the growth and survival of HGF-expressing AML cells. However, leukemic cells treated with the specific MET kinase inhibitor crizotinib developed resistance due to compensatory upregulation of HGF expression, leading to restoration of MET signaling. In cases of AML where MET is coactivated with other tyrosine kinases, such as fibroblast growth factor receptor 1 (FGFR1), concomitant inhibition of FGFR1 and MET blocked compensatory HGF upregulation, resulting in sustained logarithmic cell kill both in vitro and in xenograft models in vivo. Our results demonstrate widespread dependence of AML cells on autocrine activation of MET, as well as the importance of compensatory upregulation of HGF expression in maintaining leukemogenic signaling by this receptor. We anticipate that these findings will lead to the design of additional strategies to block adaptive cellular responses that drive compensatory ligand expression as an essential component of the targeted inhibition of oncogenic receptors in human cancers

    An Investigation of Genome-Wide Studies Reported Susceptibility Loci for Ulcerative Colitis Shows Limited Replication in North Indians

    Get PDF
    Genome-Wide Association studies (GWAS) of both Crohn's Disease (CD) and Ulcerative Colitis (UC) have unearthed over 40 risk conferring variants. Recently, a meta-analysis on UC revealed several loci, most of which were either previously associated with UC or CD susceptibility in populations of European origin. In this study, we attempted to replicate these findings in an ethnically distinct north Indian UC cohort. 648 UC cases and 850 controls were genotyped using Infinium Human 660W-quad. Out of 59 meta-analysis index SNPs, six were not in the SNP array used in the study. Of the remaining 53 SNPs, four were found monomorphic. Association (p<0.05) at 25 SNPs was observed, of which 15 were CD specific. Only five SNPs namely rs2395185 (HLA-DRA), rs3024505 (IL10), rs6426833 (RNF186), rs3763313 (BTNL2) and rs2066843 (NOD2) retained significance after Bonferroni correction. These results (i) reveal limited replication of Caucasian based meta-analysis results; (ii) reiterate overlapping molecular mechanism(s) in UC and CD; (iii) indicate differences in genetic architecture between populations; and (iv) suggest that resources such as HapMap need to be extended to cover diverse ethnic populations. They also suggest a systematic GWAS in this terrain may be insightful for identifying population specific IBD risk conferring loci and thus enable cross-ethnicity fine mapping of disease loci

    Identification and Characterization of Peripheral T-Cell Lymphoma-Associated SEREX Antigens

    Get PDF
    Peripheral T-cell lymphomas (PTCL) are generally less common and pursue a more aggressive clinical course than B-cell lymphomas, with the T-cell phenotype itself being a poor prognostic factor in adult non-Hodgkin lymphoma (NHL). With notable exceptions such as ALK+ anaplastic large cell lymphoma (ALCL, ALK+), the molecular abnormalities in PTCL remain poorly characterised. We had previously identified circulating antibodies to ALK in patients with ALCL, ALK+. Thus, as a strategy to identify potential antigens associated with the pathogenesis of PTCL, not otherwise specified (PTCL, NOS), we screened a testis cDNA library with sera from four PTCL, NOS patients using the SEREX (serological analysis of recombinant cDNA expression libraries) technique. We identified nine PTCL, NOS-associated antigens whose immunological reactivity was further investigated using sera from 52 B- and T-cell lymphoma patients and 17 normal controls. The centrosomal protein CEP250 was specifically recognised by patients sera and showed increased protein expression in cell lines derived from T-cell versus B-cell malignancies. TCEB3, BECN1, and two previously uncharacterised proteins, c14orf93 and ZBTB44, were preferentially recognised by patients' sera. Transcripts for all nine genes were identified in 39 cancer cell lines and the five genes encoding preferentially lymphoma-recognised antigens were widely expressed in normal tissues and mononuclear cell subsets. In summary, this study identifies novel molecules that are immunologically recognised in vivo by patients with PTCL, NOS. Future studies are needed to determine whether these tumor antigens play a role in the pathogenesis of PTCL

    Association of a Deletion of GSTT2B with an Altered Risk of Oesophageal Squamous Cell Carcinoma in a South African Population: A Case-Control Study

    Get PDF
    Polymorphisms in the Glutathione S-transferase genes are associated with altered risks in many cancers, but their role in oesophageal cancer is unclear. Recently a 37-kb deletion polymorphism of GSTT2B that reduces expression of GSTT2 has been described. We evaluated the influence of the GSTT1 and GSTT2B deletion polymorphisms, and the GSTP1 Ile105Val polymorphism (rs1695) on susceptibility to oesophageal squamous cell carcinoma (OSCC) in the Black and Mixed Ancestry populations of South Africa.The GSTT1, GSTT2B and GSTP1 variants were genotyped in 562 OSCC cases and 907 controls, and tested for association with OSCC and for interaction with smoking and alcohol consumption. Linkage disequilibrium (LD) between the deletions at GSTT1 and GSTT2B was determined, and the haplotypes tested for association with OSCC. Neither the GSTT1 deletion nor the GSTP1 Ile105Val polymorphism was associated with OSCC risk in the Black or Mixed Ancestry populations. The GSTT2B deletion was not associated with OSCC risk in the Black population, but was associated with reduced risk of OSCC in the Mixed Ancestry population (OR=0.71; 95% CI 0.57-0.90, p=0.004). Case-only analysis showed no interaction between the GST polymorphisms and smoking or alcohol consumption. LD between the neighboring GSTT1 and GSTT2B deletions was low in both populations (r(2)(Black)=0.04; r(2)(MxA)=0.07), thus these deletions should be assessed independently for effects on disease risk.Although there was no association between the GSTT1 deletion polymorphism or the GSTP1 Ile105Val polymorphism with OSCC, our results suggest that the presence of the recently described GSTT2B deletion may have a protective effect on the risk of OSCC in the Mixed Ancestry South African population. This is the first report of the contribution of the GSTT2B deletion to cancer risk
    • …
    corecore