1,792 research outputs found

    SLIPPERY SLOPE ? ASSESSING THE ECONOMIC IMPACT OF THE 2002 WINTER OLYMPIC GAMES IN SALT LAKE CITY, UTAH

    Get PDF
    This paper provides an empirical examination of the 2002 Winter Olympic Games in Salt Lake City, Utah. Our analysis of taxable sales in the counties in which Olympic events took place finds that some sectors such as hotels and restaurants prospered while other retailers such as general merchandisers and department stores suffered. Overall the gains in the hospitality industry are lower than the losses experienced by other sectors in the economy. Given the experience of Utah, potential Olympic hosts should exercise caution before proceeding down the slippery slope of bidding for this event.OLYMPICS, IMPACT ANALYSIS, MEGA-EVENT

    Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First Four Years

    Get PDF
    We present the results of spectroscopic observations from the ESSENCE high-redshift supernova (SN) survey during its first four years of operation. This sample includes spectra of all SNe Ia whose light curves were presented by Miknaitis et al. (2007) and used in the cosmological analyses of Davis et al. (2007) and Wood-Vasey et al. (2007). The sample represents 273 hours of spectroscopic observations with 6.5 - 10-m-class telescopes of objects detected and selected for spectroscopy by the ESSENCE team. We present 174 spectra of 156 objects. Combining this sample with that of Matheson et al. (2005), we have a total sample of 329 spectra of 274 objects. From this, we are able to spectroscopically classify 118 Type Ia SNe. As the survey has matured, the efficiency of classifying SNe Ia has remained constant while we have observed both higher-redshift SNe Ia and SNe Ia farther from maximum brightness. Examining the subsample of SNe Ia with host-galaxy redshifts shows that redshifts derived from only the SN Ia spectra are consistent with redshifts found from host-galaxy spectra. Moreover, the phases derived from only the SN Ia spectra are consistent with those derived from light-curve fits. By comparing our spectra to local templates, we find that the rate of objects similar to the overluminous SN 1991T and the underluminous SN 1991bg in our sample are consistent with that of the local sample. We do note, however, that we detect no object spectroscopically or photometrically similar to SN 1991bg. Although systematic effects could reduce the high-redshift rate we expect based on the low-redshift surveys, it is possible that SN 1991bg-like SNe Ia are less prevalent at high redshift.Comment: 21 pages, 17 figures, accepted to A

    The First Data Release from SweetSpot: 74 Supernovae in 36 Nights on WIYN+WHIRC

    Full text link
    SweetSpot is a three-year National Optical Astronomy Observatory (NOAO) Survey program to observe Type Ia supernovae (SNe Ia) in the smooth Hubble flow with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5-m telescope. We here present data from the first half of this survey, covering the 2011B-2013B NOAO semesters, and consisting of 493 calibrated images of 74 SNe Ia observed in the rest-frame near-infrared (NIR) from 0.02<z<0.090.02 < z < 0.09. Because many observed supernovae require host galaxy subtraction from templates taken in later semesters, this release contains only the 186 NIR (JHKsJHK_s) data points for the 33 SNe Ia that do not require host-galaxy subtraction. The sample includes 4 objects with coverage beginning before the epoch of B-band maximum and 27 beginning within 20 days of B-band maximum. We also provide photometric calibration between the WIYN+WHIRC and Two-Micron All Sky Survey (2MASS) systems along with light curves for 786 2MASS stars observed alongside the SNe Ia. This work is the first in a planned series of three SweetSpot Data Releases. Future releases will include the full set of images from all 3 years of the survey, including host-galaxy reference images and updated data processing and host-galaxy reference subtraction. SweetSpot will provide a well-calibrated sample that will help improve our ability to standardize distance measurements to SNe Ia, examine the intrinsic optical-NIR colors of SNe Ia at different epochs, explore nature of dust in other galaxies, and act as a stepping stone for more distant, potentially space-based surveys.Comment: Published in AJ. 10 tables. 11 figures. Lightcurve plots included as a figureset and available in source tarball. Data online at http://www.phyast.pitt.edu/~wmwv/SweetSpot/DR1_data

    Absolute Magnitudes and Colors of RR Lyrae stars in DECam Passbands from Photometry of the Globular Cluster M5

    Full text link
    We characterize the absolute magnitudes and colors of RR Lyrae stars in the globular cluster M5 in the ugriz filter system of the Dark Energy Camera (DECam). We provide empirical Period-Luminosity (P-L) relationships in all 5 bands based on 47 RR Lyrae stars of the type ab and 14 stars of the type c. The P-L relationships were found to be better constrained for the fundamental mode RR Lyrae stars in the riz passbands, with dispersion of 0.03, 0.02 and 0.02 magnitudes, respectively. The dispersion of the color at minimum light was found to be small, supporting the use of this parameter as a means to obtain accurate interstellar extinctions along the line of sight up to the distance of the RR Lyrae star. We found a trend of color at minimum light with pulsational period that, if taken into account, brings the dispersion in color at minimum light to < 0.016 magnitudes for the (r-i), (i-z), and (r-z) colors. These calibrations will be very useful for using RR Lyrae stars from DECam observations as both standard candles for distance determinations and color standards for reddening measurements.Comment: Accepted for publication in A

    Photometry and spectroscopy of faint candidate spectrophotometric standard DA white dwarfs

    Get PDF
    We present precise photometry and spectroscopy for 23 candidate spectrophotometric standard white dwarfs. The selected stars are distributed in the Northern hemisphere and around the celestial equators and are all fainter than r ~ 16.5 mag. This network of stars, when established as standards, together with the three Hubble Space Telescope primary CALSPEC white dwarfs, will provide a set of spectrophotometric standards to directly calibrate data products to better than 1%. These new faint standard white dwarfs will have enough signal-to-noise ratio in future deep photometric surveys and facilities to be measured accurately while still avoiding saturation in such surveys. They will also fall within the dynamic range of large telescopes and their instruments for the foreseeable future. This paper discusses the provenance of the observational data for our candidate standard stars. The comparison with models, reconciliation with reddening, and the consequent derivation of the full spectral energy density distributions for each of them is reserved for a subsequent paper.Comment: 31 pages, 17 figures, 10 tables, ApJ in press (accepted on December 23rd, 2018

    Low Carbon Abundance in Type Ia Supernovae

    Full text link
    We investigate the quantity and composition of unburned material in the outer layers of three normal Type Ia supernovae (SNe Ia): 2000dn, 2002cr and 20 04bw. Pristine matter from a white dwarf progenitor is expected to be a mixture of oxygen and carbon in approximately equal abundance. Using near-infrared (NIR, 0.7-2.5 microns) spectra, we find that oxygen is abundant while carbon is severely depleted with low upper limits in the outer third of the ejected mass. Strong features from the OI line at rest wavelength = 0.7773 microns are observed through a wide range of expansion velocities approx. 9,000 - 18,000 km/s. This large velocity domain corresponds to a physical region of the supernova with a large radial depth. We show that the ionization of C and O will be substantially the same in this region. CI lines in the NIR are expected to be 7-50 times stronger than those from OI but there is only marginal evidence of CI in the spectra and none of CII. We deduce that for these three normal SNe Ia, oxygen is more abundant than carbon by factors of 100 - 1,000. MgII is also detected in a velocity range similar to that of OI. The presence of O and Mg combined with the absence of C indicates that for these SNe Ia, nuclear burning has reached all but the extreme outer layers; any unburned material must have expansion velocities greater than 18,000 km/s. This result favors deflagration to detonation transition (DD) models over pure deflagration models for SNe Ia.Comment: accepted for publication in Ap

    Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First Four Years

    Get PDF
    We present the results of spectroscopic observations from the ESSENCE high-redshift supernova (SN) survey during its first four years of operation. This sample includes spectra of all SNe Ia whose light curves were presented by Miknaitis et al. (2007) and used in the cosmological analyses of Davis et al. (2007) and Wood-Vasey et al. (2007). The sample represents 273 hours of spectroscopic observations with 6.5 - 10-m-class telescopes of objects detected and selected for spectroscopy by the ESSENCE team. We present 174 spectra of 156 objects. Combining this sample with that of Matheson et al. (2005), we have a total sample of 329 spectra of 274 objects. From this, we are able to spectroscopically classify 118 Type Ia SNe. As the survey has matured, the efficiency of classifying SNe Ia has remained constant while we have observed both higher-redshift SNe Ia and SNe Ia farther from maximum brightness. Examining the subsample of SNe Ia with host-galaxy redshifts shows that redshifts derived from only the SN Ia spectra are consistent with redshifts found from host-galaxy spectra. Moreover, the phases derived from only the SN Ia spectra are consistent with those derived from light-curve fits. By comparing our spectra to local templates, we find that the rate of objects similar to the overluminous SN 1991T and the underluminous SN 1991bg in our sample are consistent with that of the local sample. We do note, however, that we detect no object spectroscopically or photometrically similar to SN 1991bg. Although systematic effects could reduce the high-redshift rate we expect based on the low-redshift surveys, it is possible that SN 1991bg-like SNe Ia are less prevalent at high redshift.Comment: 21 pages, 17 figures, accepted to A

    The Supernova Gamma-Ray Burst Connection

    Get PDF
    The chief distinction between ordinary supernovae and long-soft gamma-ray bursts (GRBs) is the degree of differential rotation in the inner several solar masses when a massive star dies, and GRBs are rare mainly because of the difficulty achieving the necessary high rotation rate. Models that do provide the necessary angular momentum are discussed, with emphasis on a new single star model whose rapid rotation leads to complete mixing on the main sequence and avoids red giant formation. This channel of progenitor evolution also gives a broader range of masses than previous models, and allows the copious production of bursts outside of binaries and at high redshifts. However, even the production of a bare helium core rotating nearly at break up is not, by itself, a sufficient condition to make a gamma-ray burst. Wolf-Rayet mass loss must be low, and will be low in regions of low metallicity. This suggests that bursts at high redshift (low metallicity) will, on the average, be more energetic, have more time structure, and last longer than bursts nearby. Every burst consists of three components: a polar jet (~0.1 radian), high energy, subrelativistic mass ejection (~1 radian), and low velocity equatorial mass that can fall back after the initial explosion. The relative proportions of these three components can give a diverse assortment of supernovae and high energy transients whose properties may vary with redshift.Comment: 10 pages, to appear in AIP Conf. Proc. "Gamma Ray Bursts in the Swift Era", Eds. S. S. Holt, N. Gehrels, J. Nouse
    • …
    corecore