2,436 research outputs found
Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group
We study Sobolev-type metrics of fractional order on the group
\Diff_c(M) of compactly supported diffeomorphisms of a manifold . We show
that for the important special case the geodesic distance on
\Diff_c(S^1) vanishes if and only if . For other manifolds we
obtain a partial characterization: the geodesic distance on \Diff_c(M)
vanishes for and for ,
with being a compact Riemannian manifold. On the other hand the geodesic
distance on \Diff_c(M) is positive for and
.
For we discuss the geodesic equations for these metrics. For
we obtain some well known PDEs of hydrodynamics: Burgers' equation for ,
the modified Constantin-Lax-Majda equation for and the
Camassa-Holm equation for .Comment: 16 pages. Final versio
Design of small-molecule active-site inhibitors of the S1A family proteases as procoagulant and anticoagulant drugs
Vitamin K antagonists (VKA) have long been the default drugs for anticoagulant management in venous thrombosis. While efficacious, they are difficult to use due to interpatient dose–response variability and the risks of bleeding. The approval of fondaparinux, a heparin-derived factor Xa (fXa) inhibitor, provided validation for the development of direct oral anticoagulants (DOAC), and currently such inhibitors of thrombin and fXa are in clinical use. These agents can be used without regular coagulation monitoring, but the inherent risk of bleeding complications associated with blocking the common coagulation pathway remains. Efforts are now underway to develop DOACs that inhibit components of the intrinsic and extrinsic coagulation cascades upstream of thrombin and fX. Evidence from humans and from transgenic animal models suggests that this strategy may provide a better therapeutic margin between antithrombotic and antihemostatic effects. Here the design of active-site inhibitors of S1A proteases involved in coagulation and fibrinolysis is summarized
Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction
The Permian-Triassic mass extinction is widely attributed to the global environmental changes caused by the eruption of the Siberian Traps. However, the precise temporal link between marine and terrestrial crises and volcanism is unclear. Here, we report anomalously high mercury (Hg) concentrations in terrestrial strata from southwestern China, synchronous with Hg anomalies in the marine Permian-Triassic type section. The terrestrial sediments also record increased abundance of fossil charcoal coincident with the onset of a negative carbon isotope excursion and the loss of tropical rainforest vegetation, both of which occurred immediately before the peak of Hg concentrations. The organic carbon isotope data show an ∼5‰–6‰ negative excursion in terrestrial organic matter (bulk organic, cuticles, and charcoal), reflecting change in atmospheric CO2 carbon-isotope composition coincident with enhanced wildfire indicated by increased charcoal. Hg spikes provide a correlative tool between terrestrial and marine records along with carbon isotope trends. These data demonstrate that ecological deterioration occurred in tropical peatlands prior to the main marine mass extinction
Insecurity for compact surfaces of positive genus
A pair of points in a riemannian manifold is secure if the geodesics
between the points can be blocked by a finite number of point obstacles;
otherwise the pair of points is insecure. A manifold is secure if all pairs of
points in are secure. A manifold is insecure if there exists an insecure
point pair, and totally insecure if all point pairs are insecure.
Compact, flat manifolds are secure. A standing conjecture says that these are
the only secure, compact riemannian manifolds. We prove this for surfaces of
genus greater than zero. We also prove that a closed surface of genus greater
than one with any riemannian metric and a closed surface of genus one with
generic metric are totally insecure.Comment: 37 pages, 11 figure
Quantum to Classical Transition from the Cosmic Background Radiation
We have revisited the Ghirardi-Rimini-Weber-Pearle (GRWP) approach for
continuous dynamical evolution of the state vector for a macroscopic object.
Our main concern is to recover the decoupling of the state vector dynamics for
the center-of-mass (CM) and internal motion, as in the GRWP model, but within
the framework of the standard cosmology. In this connection we have taken the
opposite direction of the GRWP argument, that the cosmic background radiation
(CBR) has originated from a fundamental stochastic hitting process. We assume
the CBR as a clue of the Big Bang, playing a main role in the decoupling of the
state vector dynamics of the CM and internal motion. In our model, instead of
describing a continuous spontaneous localization (CSL) of a system of massive
particles as proposed by Ghirardi, Pearle and Rimini, the It\^{o} stochastic
equation accounts for the intervention of the CBR on the system of particles.
Essentially, this approach leads to a pre-master equation for both the CBR and
particles degrees of freedom. The violation of the principle of energy
conservation characteristic of the CSL model is avoided as well as the
additional assumption on the size of the GRWP's localization width necessary to
reach the decoupling between the collective and internal motions. Moreover,
realistic estimation for the decoherence time, exhibiting an interesting
dependence on the CBR temperature, is obtained. From the formula for the
decoherence time it is possible to analyze the transition from micro to macro
dynamics in both the early hot Universe and the nowadays cold one. The entropy
of the system under decoherence is analyzed and the emergent `pointer basis' is
discussed. In spite of not having imposed a privileged basis, in our model the
position still emerges as the preferred observable as in the CSL model.Comment: 14 pages, no figure. To appear in Phys. Rev.
Automated Classification of Airborne Laser Scanning Point Clouds
Making sense of the physical world has always been at the core of mapping. Up
until recently, this has always dependent on using the human eye. Using
airborne lasers, it has become possible to quickly "see" more of the world in
many more dimensions. The resulting enormous point clouds serve as data sources
for applications far beyond the original mapping purposes ranging from flooding
protection and forestry to threat mitigation. In order to process these large
quantities of data, novel methods are required. In this contribution, we
develop models to automatically classify ground cover and soil types. Using the
logic of machine learning, we critically review the advantages of supervised
and unsupervised methods. Focusing on decision trees, we improve accuracy by
including beam vector components and using a genetic algorithm. We find that
our approach delivers consistently high quality classifications, surpassing
classical methods
Characterizing normal crossing hypersurfaces
The objective of this article is to give an effective algebraic
characterization of normal crossing hypersurfaces in complex manifolds. It is
shown that a hypersurface has normal crossings if and only if it is a free
divisor, has a radical Jacobian ideal and a smooth normalization. Using K.
Saito's theory of free divisors, also a characterization in terms of
logarithmic differential forms and vector fields is found and and finally
another one in terms of the logarithmic residue using recent results of M.
Granger and M. Schulze.Comment: v2: typos fixed, final version to appear in Math. Ann.; 24 pages, 2
figure
Constraints on radiative decay of the 17-keV neutrino from COBE Measurements
It is shown that, for a nontrivial radiative decay channel of the 17-keV
neutrino, the photons would distort the microwave background radiation through
ionization of the universe. The constraint on the branching ratio of such
decays from COBE measurements is found to be more stringent than that from
other considerations. The limit on the branching ratio in terms of the Compton
parameter is for an
universe.Comment: 7 pages. (figures will be sent on request) (To appear in Phys. Rev.
D.
- …