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CHARACTERIZING NORMAL CROSSING HYPERSURFACES

ELEONORE FABER

Abstract. The objective of this article is to give an effective algebraic character-
ization of normal crossing hypersurfaces in complex manifolds. It is shown that a
divisor (=hypersurface) has normal crossings if and only if it is a free divisor, has a
radical Jacobian ideal and a smooth normalization. Using K. Saito’s theory of free
divisors, also a characterization in terms of logarithmic differential forms and vector
fields is found. Finally, we give another description of a normal crossing divisor in
terms of the logarithmic residue using recent results of M. Granger and M. Schulze.
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1. Introduction

Consider a divisor (=hypersurface) D in a complex manifold S of dimension n. Then
D is said to have normal crossings at a point p if locally at p there exist complex
coordinates (x1, . . . , xn) such that D is defined by the equation x1 · · ·xm = 0 for some
0 ≤ m ≤ n. In general there is no algorithm to find these coordinates. Hence the
question arises: is there an effective algebraic characterization of a divisor with nor-
mal crossings?

Normal crossing divisors appear in many contexts in algebraic and analytic geometry,
for example in the embedded resolution of singularities [Hir64], in compactification
problems [FM94, DCP95] or in cohomology computations [Del71]. However, given an
(algebraic or analytic) variety, it is not clear how to determine effectively if this variety
has normal crossings: only in case the decomposition into irreducible components is
known, the normal crossings property can be checked rather easily (see e.g. [Bod04]).

The main goal of this article is to derive an effective algebraic criterion for a nor-
mal crossing divisor in a complex manifold. By “effective” is meant that one should
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2 ELEONORE FABER

be able to decide from data derived from a local defining equation of the divisor
whether it has normal crossings at a point. The guiding idea for our investigations
is that the singular locus, that is given by the Tjurina algebra, carries all informa-
tion about the geometric properties of a divisor. Here we were inspired by work of
Mather–Yau about isolated hypersurface singularities [MY82] and Gaffney–Hauser in
a more general setting [GH85]. On the other hand the tangent behaviour along the
divisor, via so-called logarithmic vector fields, will give us means to control the nor-
mal crossings property. Here the rich theory of logarithmic vector fields (differential
forms), initiated by K. Saito in the 1980’s [Sai80], will be the other main ingredi-
ent for an algebraic criterion characterizing normal crossing divisors. Saito intro-
duced the notion of free divisor (a certain generalization of normal crossing divisor),
which appears in different areas: for example in deformation theory as discriminants
[Sai81, Loo84, Ale86, MvS01, BEvB09], in combinatorics as free hyperplane arrange-
ments [Ter80, OT92], related to prehomogeneous vector spaces [BM06, GMS11] or in
connection with the logarithmic comparison problem [CNM96, CN09].
Since a normal crossing divisor is in particular free, one is led to impose additional
conditions on free divisors in order to single out the ones with normal crossings. It
turns out that the radicality of the Jacobian ideal is the right property.

The main result is:

Theorem A (Thm. 1). A divisor in a complex manifold has normal crossings at a
point if and only if it is free with radical Jacobian ideal at that point and its normal-
ization is smooth.

Since there is an interpretation of free divisors by their Jacobian ideals (due to Alek-
sandrov [Ale90], also see [Ter83, Sim06]), one thus obtains a purely algebraic charac-
terization of normal crossing divisors. The proof uses a Theorem of R. Piene about
ideals in desingularizations [Pie79] and also results of Granger and Schulze about the
dual logarithmic residue, see [GS14]. The condition on the normalization is technical
and we do not know if it is necessary in general: we show that in some special cases
(Gorenstein singular locus, normal irreducible components) no additional properties
of the normalization have to be required.

Moreover, two other characterizations of normal crossing divisors in terms of loga-
rithmic differential forms (resp. vector fields) and the logarithmic residue are shown.

Proposition B (Prop. 6). A divisor D in a complex manifold S has normal crossings
at a point p if and only if Ω1

S,p(logD), its module of logarithmic 1-forms, is free and has

a basis of closed forms. This is also equivalent to the condition that DerS,p(logD), its
module of logarithmic derivations, is free and has a basis of commuting vector fields.

This result is based on Saito’s theory of logarithmic differential forms. Here already
the so-called logarithmic residue is used, which was also introduced by Saito and
further studied by Aleksandrov [Ale05] and Aleksandrov–Tsikh [AT01]. The above
proposition follows from a slight modification of a Theorem of Saito (see Thm. 5).

Proposition C (Prop. 7). A divisor in a complex manifold has normal crossings if
and only if it is free, has smooth normalization and the residues of its logarithmic
1-forms are holomorphic on the normalization.
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The final result makes use of the dual logarithmic residue, introduced by Granger and
Schulze [GS14].

The article contains the following: in section 2 singularities of normal crossing divi-
sors are studied in order to prove Theorem A. Free divisors are introduced via the
Jacobian ideal characterization due to Aleksandrov. First it is shown that a curve in a
complex manifold S of dimension 2 has normal crossings at a point p if and only if its
Jacobian ideal is radical of depth 2 in OS,p (Prop. 1). This is generalized in Prop. 2 to
the case where D is a divisor in a complex manifold S of dimension n having reduced
Gorenstein singular locus. Here we show that OSingD,p is a reduced Gorenstein ring
of dimension n − 2 if and only if D has normal crossings and (SingD, p) is smooth.
Then the general case of the theorem is proven (using results by R. Piene, M. Granger
and M. Schulze and from [Fab13]). In section 2.3 radical Jacobian ideals are investi-
gated, in particular we pose the question, which radical ideals can be Jacobian ideals.
Our main result in this direction is that if a divisor D has a reduced singular locus
of codimension k which is also a complete intersection, then D is analytically trivial
along its singular locus and isomorphic to a k-dimensional A1-singularity (Prop. 4).
Here, after computation of examples, further questions and conjectures are raised.
In the next section, Saito’s theory of logarithmic differential forms and vector fields is
briefly recalled, in particular the notion of logarithmic residue. This is used to prove
Proposition B.
In the last section we recall the dual logarithmic residue and the results of Granger
and Schulze which lead to Proposition C. It is also shown that a divisor with normal
irreducible components is free and has weakly holomorphic logarithmic residue if and
only if it has normal crossings, without any condition on the normalization (Lemma
12). Furthermore, some results on divisors with weakly holomorphic residue are col-
lected. We close this section with a few comments on divisors with normal crossings
in codimension 1.
The results in this article form part of the author’s Ph.D. thesis at the University of
Vienna.

2. Singularities of normal crossing divisors

We work in the complex analytic category. The main objects of our study are divisors
(=hypersurfaces) in complex manifolds. We write (S,D) for a fixed divisor D in an
n-dimensional complex manifold S. Denote by p a point in S and by x = (x1, . . . , xn)
the complex coordinates of S around p. The divisor (D, p) will then be defined locally
by an equation {hp(x1, . . . , xn) = 0} where hp ∈ OS,p (if the context is clear we omit
the subscript p). Note that we will always assume that h is reduced! The divisor D
has normal crossings at a point p if one can find complex coordinates (x1, . . . , xn)
at p such that the defining equation h of D is h = x1 · · ·xk for k ≤ n. We also
say that (D, p) is a normal crossing divisor. The Jacobian ideal of h is denoted by
Jh = (∂x1

h, . . . , ∂xnh) ⊆ OS,p. The image of Jh under the canonical epimorphism that

sends OS,p to OD,p = OS,p/(h) is denoted by J̃h. The associated analytic coherent

ideal sheaves are denoted by J ⊆ OS and J̃ in OD. The singular locus of D is

denoted by SingD and is defined by the ideal sheaf J̃ ⊆ OD. The local ring of SingD
at a point p is denoted by

OSingD,p = OS,p/((h) + Jh) = OD,p/J̃h.
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Sometimes OSingD,p = C{x1, . . . , xn}/(h, ∂x1
h, . . . , ∂xnh) is also called the Tjurina

algebra. Note that we always consider SingD with the (possibly non-reduced) struc-
ture given by the Jacobian ideal of D. Hence in general (SingD, p) is a complex space
germ and not necessarily reduced. We often say that SingD is Cohen–Macaulay,
which means that OSingD,p is Cohen–Macaulay for all points p ∈ SingD. For facts
about local analytic geometry we refer to [dJP00, Nar66], about commutative algebra
to [Mat86].

Definition 1. Let D be a divisor in a complex manifold S of dimension n that is
locally at a point p given by h = 0. Then D is called free at p if either D is smooth
at p or OSingD,p is a Cohen–Macaulay ring of dimension n − 2. The divisor D is a
free divisor if it is free at each p ∈ S.

Remark 1. Usually, free divisors are defined via logarithmic derivations, see section
3. The equivalence of the two characterizations was proven by A. G. Aleksandrov in
[Ale90].

Hence free divisors are either smooth or non-normal. It is easy to see that normal
crossing divisors are free (see proof of Theorem 1). Thus one has to impose an
additional condition on the Jacobian ideal to ensure that a given free divisor really
has normal crossings. In order to get an idea of the right property, look at some
examples.

Example 1. (1) Let D be the cone in C3, given by the equation z2 = xy. It does not
have normal crossings at the origin but the Jacobian ideal Jh,0 = (z, x, y) is clearly
radical and OC3,0/(x, y, z) ∼= C is Cohen–Macaulay. However, the depth of OC3,0/Jh,0
is 0 and thus too small.
(2) Let S = C3 andD be the “4-lines” defined by h = xy(x+y)(x+yz), see fig. 1 and cf.
[CN02, Nar08]. This divisorD is free. Its Jacobian ideal is the intersection of the three
primary ideals (x+y, z−1), (x, z) and (y4, 2xy2z+y3z+3x2y+2xy2, 4x2yz−3y3z+
2x3−5x2y−6xy2) and is not radical (the radical

√
Jh is (x+y, z−1)∩ (x, z)∩ (x, y)).

Also D does not have normal crossings at the origin.
(3) The Hessian deformation of an E8 curve (see [Dam02], for a different interpretation
see [Sek08]) is a divisor in C3 defined by h = y5 + z3 + xy3z. It does not have normal
crossings at 0: it is irreducible and free at 0 but Jh is not radical. The reduced
Jacobian ideal is (y, z), the x-axis, cf. fig. 1.

Figure 1. Hessian deformation of y5 + z3 (left) and The 4-lines (right).
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So the right additional requirement turns out to be radicality of the Jacobian ideal.
Thus a purely algebraic criterion is obtained, which allows to determine whether a
divisor has normal crossings at a point p, even without knowing its decomposition
into irreducible components.

Theorem 1. Let D be a divisor in a complex manifold S, dimS = n. Denote by

π : D̃ → D the normalization of D. Then the following are equivalent:
(1) D has normal crossings at a point p in D.

(2) D = {h = 0} is free at p, the Jacobian ideal Jh,p is radical and (D̃, π−1(p)) is
smooth.

Remark 2. Condition (2) of the above theorem can also be phrased as:
(2’) At p ∈ D the Milnor algebra OSingD,p is reduced and either 0 or Cohen–Macaulay
of dimension n− 2 and π∗OD̃,p

is a regular ring.

Another equivalent formulation is:
(2”) At p ∈ D, where D = {h = 0}, the Jacobian ideal Jh is either equal to OS,p or
it is radical, perfect with depth(Jh,OS,p) = 2 and π∗OD̃,p

is regular.

Remark 3. The condition D̃ smooth is technical and only needed to apply Piene’s
Theorem (Thm. 3) in our proof of Thm. 1. In some special cases (see section 2.1 and
also Corollary 2 and Lemma 12) it can be omitted. We do not know if this condition
is necessary in general (cf. Remark 10).

About the proof of Theorem 1: the implication (1) ⇒ (2) is a straightforward com-
putation. We start with showing (2) ⇒ (1) for some special cases, namely for divisors
in manifolds S of dimension 2 (Prop. 1) and for SingD Gorenstein (Prop. 2). Note
that in the section about free divisors and logarithmic residue the theorem will be
shown in the case where D is a union of normal hypersurfaces. For these cases, the

assumption D̃ smooth is not needed. The general proof of (2) ⇒ (1) occupies the rest
of this section.

2.1. Special cases of Theorem 1.

Lemma 1. Let D ⊆ S locally at a point p be defined by an equation h = 0. If Jh is
radical, then h ∈ Jh, which implies OSingD,p = OS,p/Jh.

Proof. One can show that h is contained in the ideal Jh, the integral closure of Jh, see
[LJT08]. It follows from the Theorem of Briançon–Skoda that Jn

h ⊆ Jh, see [LT81].

Since (Jh)
n ⊆ Jn

h (see for example [LJT08]), the n-th power of h is contained in Jh
and by our assumption Jh already contains h. �

Remark 4. The above lemma shows in particular that if Jh is radical then also Jh = Jh.
The blowup of D in Jh is the Nash blowup of (D, p), see e.g. [Nob75]. It is an
interesting question whether in the case of a radical Jacobian ideal this blowup is
equal to the normalized Nash blowup (see [LJT08, Section 3]).

Proposition 1. Let dimS = 2 and the divisor D be defined at a point p by a reduced
h ∈ OS,p. Then D has normal crossings at p if and only if D is free at p and D is
either smooth or Jh is radical of depth 2 on OS,p.

Proof. If D has normal crossings at p, then a simple computation shows the assertion.
Conversely, suppose that D is not smooth at p and Jh is radical of depth 2 on OS,p.
Since D is a reduced curve, Jh defines an isolated singularity, that is, Jh is primary to
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the maximal ideal m of OS,p. Because Jh is radical it follows that Jh = m. This means
that OSingD,p

∼= C at p. Now one can use either a direct computation or apply the
Theorem of Mather–Yau [MY82] for isolated singularities: here it means that (D, p)
is isomorphic to the normal crossings divisor (N, p) (defined locally at p = (x1, x2)
by the equation {x1x2 = 0}) if and only if their singular loci are isomorphic. But
OSingN,p = OS,p/(x1, x2) ∼= C is clearly isomorphic to OSingD,p. Hence the assertion
is shown. �

A particular class of Cohen–Macaulay rings are the so-called Gorenstein rings. In
general, Gorenstein rings lie between complete intersections and Cohen–Macaulay
rings. We prove here Thm. 1 for OSingD,p Gorenstein.
Good references for definitions and properties regarding Gorenstein rings are [Bas63,
Eis95, Mat86]. In our situation, where the Jacobian ideal defining OSingD,p has depth
two on OS,p, one sees that Gorenstein rings and complete intersection rings coincide,
see [Eis95, Cor. 21.20]:

Theorem 2 (Serre). Let R be a regular local ring and I ⊆ R an ideal with depth(I, R) =
2. Then R/I is Gorenstein if and only if I is generated by a regular sequence of length
2.

This leads to the statement of

Proposition 2. Let (S,D) be the pair of an n-dimensional complex manifold S to-
gether with a divisor D ⊆ S and D = {h = 0} at a point p. Suppose that Jh is
radical and OSingD,p is a Gorenstein ring of Krull-dimension n− 2. Then (SingD, p)
is smooth and D has locally at p normal crossings.

First let us consider a possible counter-example to this proposition:

Example 2. (The cusp) The (reduced) cusp curve in C3 is defined by I = (x31−x22, x3).
Since O/I is a complete intersection ring, it is Gorenstein. However, O/I is clearly
not regular. In order that I equals Jh for some h ∈ O one must have ∂xi

h = ai1(x
3
1 −

x22) + ai2x3, for i = 1, 2, 3. Now consider the C-vector space I/mI. Since O is a

local ring, Nakayama’s Lemma yields that x31 − x22, x3 form a basis of this vector
space. From the Poincaré Lemma it follows that three functions f1, f2, f3 are partial
derivatives ∂x1

h, ∂x2
h, ∂x3

h if and only if ∂x2
f1 = ∂x1

f2, ∂x1
f3 = ∂x3

f1, ∂x3
f2 = ∂x2

f3.
Writing out these conditions for ai1(x

3
1 − x22) + ai2x3 it follows that a11(0) = a21(0) =

a12(0) = a22(0) = 0. Hence modulo m the ∂xi
h cannot be generated by x31 − x22, x3.

By Nakayama’s Lemma this contradicts the fact that the ∂xi
h also generate I. Thus

I cannot be the Jacobian ideal Jh of some reduced h.

Remark 5. One can construct surfaces in C3 with the cusp as singular locus by blowing
down, see [FH10]. However, then the Jacobian ideal will not be radical.

Lemma 2. Let (S,D) be as before, with dimS = n and D = {h = 0} at a point
p = (x1, . . . , xn). Suppose that the Jacobian ideal Jh = (∂x1

h, . . . , ∂xnh) is radical
and OSingD,p is Gorenstein of dimension (n − 2). Then Jh can be generated by two
derivatives ∂xi

h, ∂xj
h.

Proof. Since OS,p/Jh is Gorenstein, Thm. 2 yields that Jh is generated by a regular
sequence f, g in m. Then there exists an (n× 2)-matrix A ∈ Mn,2(OS,p) such that

(1) A(f, g)T = (∂x1
h, . . . , ∂xnh)

T .
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Consider the OS,p/m-module Jh/mJh. Then, since OS,p/m = C, the residue class A of
the matrix A of (1) is in Mn,2(C). This means that we have obtained a solvable linear
system of equations with coefficients in C. Thus one sees that f and g are C-linear
combinations of two partial derivatives, wlog. of ∂x1

h and ∂x2
h modulo mJh. This

implies Jh = (∂x1
h, ∂x2

h) + mJh (as OS,p-modules). An application of Nakayama’s
Lemma shows the assertion. �

Proof of Prop. 2. From Lemma 2 it follows that Jh can be generated by two deriva-
tives of h, wlog. Jh = (∂x1

h, ∂x2
h). Hence one has ∂xi

h = ai(∂x1
h) + bi(∂x2

h),
ai, bi ∈ OS,p, for 3 ≤ i ≤ n. Consider vector fields δi = ∂xi

− ai∂x1
− bi∂x2

for
3 ≤ i ≤ n. Then clearly one has δi(h) = 0. Evaluation of these n− 2 vector fields at
0 shows that δ3(0), . . . , δn(0) are C-linearly independent vectors in (S, p) ∼= (Cn, 0).
Thus Rossi’s Theorem can be applied (see [Ros63]): locally at p the germ (D, p) is
isomorphic to (D′ × Cn−2, (0, 0)), where D′ is locally contained in C2. Hence the
problem has been reduced to dimC S = 2. Then Prop. 1 shows that locally at p the
divisor D is isomorphic to the union of two transversally intersecting hyperplanes. �

Remark 6. Instead of using Rossi’s Theorem in the above proof, we could use the
argument in Lemma 2.3 of [CNM96] and apply induction.

Remark 7. One can also prove Proposition 2 using Pellikaan’s theory of the primitive
ideal [Pel88]. Then one can show that D is even analytically trivial along SingD,
that is, (D, p) ∼= (D0 × Cn−2, (0, 0)), where D0 is isomorphic to the fibre of D at the
origin defined by h(x1, x2, 0). This is carried out in detail in [Fab11].

2.2. General proof of Theorem 1. The ideas to show the special cases do not
lead to a proof in general. Therefore, our strategy to prove the general case is the
following:
(i) If (D, p) =

⋃m
i=1(Di, p) is free and a union of irreducible components and has rad-

ical Jacobian ideal, then we show that each Di is also free and has radical Jacobian
ideal.
(ii) If D is free, irreducible, has radical Jacobian ideal at p and the normalization D̃
is smooth, then D is already smooth at p.
(iii) A free divisor D, which is a union of smooth irreducible hypersurfaces and has a
radical Jacobian ideal, is already a normal crossing divisor.

In order to obtain (i) and (iii) we will use the results from [Fab13]: therefore so-
called splayed divisors are introduced. A splayed divisor D is a union of transversally
meeting hypersurfaces that are possibly singular (see definition below). A divisor
(D, p) =

⋃m
i=1(Di, p) with radical Jacobian ideal is splayed (Prop. 3). Then claim

(iii) follows from Corollary 1. Note that (iii) also follows from Lemma 12, where the
logarithmic residue is used. Claim (ii) follows from Piene’s Theorem (Thm. 3).

Definition 2. Let D be a divisor in a complex manifold S, dimS = n. The divisor
D is called splayed at a point p ∈ S (or (D, p) is splayed) if one can find coordinates
(x1, . . . , xn) at p such that (D, p) = (D1, p) ∪ (D2, p) is defined by

h(x) = h1(x1, . . . , xk)h2(xk+1, . . . , xn),

1 ≤ k ≤ n−1, where hi is the defining reduced equation ofDi. Note that the hi are not
necessarily irreducible. The splayed components D1 and D2 are not unique. Splayed
means that D is the union of two products: since h1 is independent of xk+1, . . . , xn,
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the divisor D1 is locally at p isomorphic to a product (D′
1, 0) × (Cn−k, 0), where

(D′
1, 0) ⊆ (Ck, 0) (and similar for D2).

Proposition 3. Let D = D1∪D2 be a divisor in an n dimensional complex manifold
S and let D, D1 and D2 at a point p ∈ S be defined by the equations gh, g and h,
respectively. Suppose that Jgh is radical. Then D is splayed and Jh and Jg are also
radical. If moreover D is free at p then also D1 and D2 are free at p.

Proof. See [Fab13]. �

From this follows (using induction on n, see [Fab13])

Corollary 1. Let (S,D) be a complex manifold, dimS = n, together with a divisor
D ⊆ S and suppose that locally at a point p ∈ S the divisor (D, p) has the decomposi-
tion into irreducible components

⋃m
i=1(Di, p) such that each (Di, p) is smooth. Let the

corresponding equation of D at p be h = h1, . . . , hm. If D is free at p and Jh =
√
Jh

then D has normal crossings at p.

In order to state Piene’s Theorem below, we need some properties of the normalization
of D, in particular of the conductor ideal.
Let (X,x) be the germ of an equidimensional analytic space with normalization π :

X̃ → X. Then the conductor ideal CX,x at x is the largest ideal that is an ideal in
OX,x as well as in O

X̃,x
(we write CX if there is no danger of confusion regarding

the point x). Here note that O
X̃,x

is canonically isomorphic to π∗OX̃,x
and also to

the ring of weakly holomorphic functions on X, see e.g. [dJP00]. Alternatively, the
conductor CX,x can be defined as the ideal quotient (OX,x : π∗OX̃,x

) = {f ∈ OX,x :

fπ∗OX̃,x
⊆ OX,x} or as HomOX,x

(π∗OX̃,x
,OX,x). Note that CX is a coherent sheaf of

ideals over OX .

Theorem 3 (Piene’s Theorem). Let X be a locally complete intersection variety of
dimension s over an algebraically closed field k. Let f : Z → X be a desingularization
of X and denote by If = F 0

Z(Ω
1
Z/X) the ramification ideal of f in OZ and by JX the

ideal F s
X(Ω1

X/k). Suppose that f is finite. Then there is an equality of ideals

JXOZ = IfCXOZ .

Proof. See Theorem 1 and Corollary 1 of [Pie79]. �

Remark 8. (1) The above theorem also holds in the analytic case since all constructions
in the proof of Theorem 1 of [Pie79] also work, cf. [MP89, Ale90, GS14].
(2) The ideal JX is sometimes also called “Jacobian ideal of X”. We need the above
theorem in the case where X is a divisor D in a complex manifold S defined locally
at a point p by {h = 0}. Then JD is simply the ideal Jh in OD,p (resp. the ideal
((h)+Jh) ⊆ OS,p) defining the singular locus (SingD, p). Clearly, D is at p a complete
intersection.

Lemma 3. Let (S,D) be a complex manifold, dimS = n, together with a divisor
D ⊆ S and suppose that D = {h = 0} is free at p and that Jh =

√
Jh. Then the

Jacobian ideal equals the conductor of the normalization, that is Jh = CD,p.

Proof. The inclusion Jh ⊆ CD,p always holds. Since in case of a free divisor the singu-
lar locus is non-normal, it follows that supp(OD,p/Jh) = supp(OD,p/CD,p). Because
Jh is radical, it is actually equal to CD,p. �
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Lemma 4. Let π : D̃ → D be the normalization of an irreducible (D, p) and suppose
that π is unramified, that is, Ω1

D̃/D
= 0. Then π is an isomorphism.

Proof. See e.g. Lemma 4.1 of [GS14]. �

Proof of Theorem 1. First let us suppose that D is singular and has normal crossings
at p ∈ SingD. Then we can assume that D =

⋃m
i=1(Di, p) is given by the equation

h = x1 · · ·xm, 1 < m ≤ n where each xi corresponds to an irreducible component Di

passing through p. Then

Jh =

m∑

i=1

(x1 · · · x̂i · · ·xm).

The ideal Jh is the ideal generated by the maximal minors of the (n−1)×nmatrix with
rows (x1, 0, . . . , 0,−xi, 0, . . . , 0) for i = 2, . . . , n. Therefore O/Jh is Cohen–Macaulay
of dimension n − 2 by the Theorem of Hilbert–Burch. Using facts about primary
decomposition of monomial ideals, see e.g.[HS02], it follows that

Jh =
⋂

1≤i<j≤m

(xi, xj),

which is clearly radical. The normalization of a normal crossing divisor D =
⋃m

i=1Di

is smooth since it is the disjoint union of the smooth components Di.
Conversely, suppose that Jh =

√
Jh and OSingD,p is Cohen–Macaulay of dimension

(n−2) and moreover that O
D̃,π−1(p)

is regular (denote by π : D̃ → D the normalization

morphism, resp. by πi : D̃i → Di the normalization of Di). Note here that always
O

D̃
=
⊕m

i=1OD̃i
holds, see [dJP00]. Prop. 3 implies that each Di is free at p and

has a radical Jacobian ideal Jhi
. By our hypothesis, Piene’s Theorem (Thm. 3) and

remark 8 yield the equality of ideals

CDi
Iπi

O
D̃i,p

= Jhi
O

D̃i,p
.

Since by Lemma 3 one has Jhi
= CDi,p in ODi,p, it follows, using Nakayama’s Lemma,

that Iπi
= O

D̃i,p
. Hence Ω1

D̃i/Di
= 0. By Lemma 4, each πi is an isomorphism and

thus Di is already normal at p. By definition, the only free divisor that is normal is
the smooth divisor, so it follows that each Di is smooth at p. For (D, p) =

⋃m
i=1(Di, p)

this means that we are in the situation of Corollary 1 and the assertion follows. �

Remark 9. We can also give a different proof of (2) ⇒ (1) of Thm. 1 using the char-
acterization of normal crossings by the logarithmic residue of Prop. 7: let (D, p) =⋃m

i=1(Di, p) be the decomposition into irreducible components and suppose that Jh =√
Jh. Then the singular locus of the singular locus, Sing(SingD), is of dimension

less than or equal to (n − 3). By Proposition 2, D has normal crossings at smooth
points of SingD. Hence D has normal crossings in codimension 1. From a result of
Saito [Sai80, Lemma 2.13] it follows that the logarithmic residue is holomorphic on
the normalization, that is, ρ(Ω1

S(logD)) = π∗OD̃
. Then Prop. 7 shows that D is a

normal crossing divisor.

Remark 10. We do not know whether the condition on the normalization of D in
Theorem 1 is necessary. If (D, p) is free and has a radical Jacobian ideal, then by

Lemma 9 the normalization (D̃, π−1(p)) is Cohen–Macaulay. Here the question is if
Piene’s Theorem about the equality of the ideals holds in a more general context or
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if we can find an alternative argument to show that the normalization π : D̃ → D is
unramified.

Conjecture 1. Let D ⊆ S be a divisor in a complex manifold S that is locally at a

point p given by h = 0 and denote by π : D̃ → D its normalization. Suppose that D

is free at p and that Jh =
√
Jh. Then the normalization D̃ of D is already smooth at

π−1(p).

This conjecture is supported by the results of Granger and Schulze about the dual
logarithmic residue, see [GS14].

2.3. Radical Jacobian ideals. Let D be a divisor in a smooth n-dimensional mani-
fold S that is locally at a point p given by h ∈ OS,p. Suppose that Jh is radical. Which
ideals I ⊆ OS,p can be such radical Jacobian ideals Jh? More precisely: given a rad-
ical ideal I ⊆ OS,p, when does there exist a divisor (D, p) = {h = 0} such that I = Jh?

If I is a complete intersection then in Proposition 4 it is shown that I is a Jacobian
ideal if and only if it defines a smooth variety. Apart from that, the case of dimS = 2
was treated in Proposition 1. For dimS = 3 it also easily follows that for a divisor
D = {h = 0} with Jh =

√
Jh 6= (1) and smooth normalization one of the two cases

occurs:
(i) depth(Jh,OS,p) = 3 and (D, p) is an A1-singularity.
(ii) depth(Jh,OS,p) = 2 and D has normal crossings at p.
Here (i) directly follows from Prop. 4. To prove (ii) one uses that a reduced one-
dimensional local ring is Cohen–Macaulay, see e.g. [Eis95], and Theorem 1.

Question 1. Does there exist a surface (D, p) ⊆ (C3, p) such that (D, p) is free and

Jh =
√
Jh 6= (1) but (D̃, p̃) is not smooth?

For dimS ≥ 4 the situation is more involved, we split it into two parts.

2.3.1. Codimension 1 singular locus.

Example 3. Consider a manifold (S, p) ∼= (C4, 0) with coordinates p = (x, y, z, w).
Then the ideal I = (x, y) ∩ (z, w) = (xz, xw, yz, yw) ⊆ OS,p is radical and defines
an equidimensional 2-dimensional analytic space germ (Z, p). One can show that
OS,p/I is not Cohen–Macaulay, which implies that I is not a complete intersection.
By computation we show that there does not exist an h ∈ OS,p such that I = Jh: first
note that I is the Jacobian ideal of a divisor defined by some h ∈ OS,p if and only if
there exists a matrix A ∈ GL4(OS,p) such that

(2) (∂xh, ∂yh, ∂zh, ∂wh)
T = AfT ,

where f is the vector (f1, . . . , f4) := (xz, yz, xw, yw). Hence the matrix A(0) has to
be in GL4(C). The partial derivatives of h have to satisfy six equations, namely

∂xyh = ∂yxh, ∂xzh = ∂zxh, ∂xwh = ∂wxh,

∂yzh = ∂zyh, ∂ywh = ∂wyh, ∂zwh = ∂wzh.

An explicit comparison of the order zero terms of (2) plugged into these relations
shows that in the matrix A(0) the first row is zero, which means that A 6∈ GL4(OS,p).



CHARACTERIZING NORMAL CROSSING HYPERSURFACES 11

Conjecture 2. Let D ⊆ S be a divisor defined at a point p by h ∈ OS,p. If Jh
is radical, of depth 2 on OS,p and equidimensional, then OS,p/Jh is already Cohen–
Macaulay. In other words: we conjecture that if a divisor that has locally at a point
p ∈ S an equidimensional radical Jacobian ideal of depth 2 is already free at p.

If Jh is not equidimensional, the only thing we can say is that it is the intersection of
some prime ideals whose minimal height is 2.

Example 4. (The Jacobian ideal can be of height 2 and radical but it may not be
equidimensional) Consider S = C5 at the origin with coordinates (x, y, z, s, t). Let
the divisor D be locally defined by h = (x2 + y2 + z2)(s2 − t2) ∈ O = C{x, y, z, s, t}.
Note that D is splayed and the union of a normal crossing divisor and a cone. The
Jacobian ideal Jh is radical, its height is 2 and it has the prime decomposition

(x, y, z) ∩ (s− t, x2 + y2 + z2) ∩ (s, t) ∩ (s+ t, x2 + y2 + z2).

The ideal Jh is not unmixed and hence OSingD = O/Jh is not Cohen–Macaulay.

Question 2. Suppose that Jh of a divisor D is radical and of height 2 but not equidi-
mensional. Which Jh are possible?

2.3.2. Higher codimensional singular locus. In this case the divisor D has to be irre-
ducible and normal.

Proposition 4. Let Jh =
√
Jh be the Jacobian ideal of the divisor D ⊆ S and denote

by SingD its singular locus with associated ring OSingD,p = OS,p/Jh at p. Suppose
that codimp(SingD,S) = k and that (SingD, p) is a complete intersection. Then D
is isomorphic to {x21 + · · · + x2k = 0}, that is, D has locally along SingD an A1-
singularity.
In particular, it follows that (SingD, p) is a complete intersection if and only if
(SingD, p) is smooth and thus D is isomorphic to {x21 + · · ·+ x2k = 0}.
Proof. The proof is similar to the free divisor case, see Prop. 2. Since (SingD, p) is a
complete intersection, there exist f1, . . . , fk ∈ Os,p such that Jh = (f1, . . . , fk). Since
the fi generate Jh, there is an n× k matrix A with entries in OS,p such that

A(f1, . . . , fk)
T = (∂x1

h, . . . , ∂xnh)
T .

Similar to Lemma 2 consider the O/m = C module Jh/mJh. Hence wlog. one may
assume that Jh = (∂x1

h, . . . , ∂xk
h). Similar to the proof of Prop. 2, D may be con-

sidered in (Ck, 0) and defined by h∗(x1, . . . , xk) = h(x1, . . . , xk, 0). Then since Jh∗

defines a complete intersection of codimension k in (Ck, 0), it defines an isolated sin-
gularity. Like in the 2-dimensional case (Prop. 1) we find that D is locally isomorphic
to {x21 + · · ·+ x2k = 0}. �

It is not clear how to treat non-complete intersection radical Jacobian ideals of height
k, 3 ≤ k < n in O, we do not even know if there exist divisors D = {h = 0} such
that Jh =

√
Jh of height k ≥ 3 is not a complete intersection. For example, one

can show in a similar way like in example 3 that the equidimensional radical ideal
I = (x1, x2, x3) ∩ (x4, x5, x6) ⊆ O = C{x1, . . . , x6} cannot be the Jacobian ideal of
some h ∈ O.
The propositions and examples above motivate the following

Conjecture 3. Let D be a divisor in a complex manifold S, defined locally at a point
p by a reduced h ∈ OS,p. Suppose that the Jacobian ideal Jh is radical, equidimensional
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and of depth ≥ 3 on OS,p. Then the variety SingD with coordinate ring O/Jh is a
complete intersection, that is, SingD is Cohen–Macaulay and must even be smooth
by Prop. 4.

3. Normal crossings and logarithmic differential forms and vector
fields

Usually, free divisors are introduced via logarithmic differential forms and vector fields.
These will be introduced here and also the logarithmic residue, which will be needed
in this and the next section. The corresponding theory was developed by K. Saito in
[Sai80], where also proofs for most of our assertions can be found.
In this section we give a characterization of a normal crossing divisor in terms of
generators of its module of logarithmic differential forms resp. vector fields (Prop. 6).
Namely, a divisor D ⊆ S has normal crossings at a point p if and only if Ω1

S,p(logD)

is a free OS,p-module and has a basis of closed forms or if and only if DerS,p(logD) is
a free OS,p-module and has a basis of commuting vector fields (this means that there
exist logarithmic derivations δ1, . . . , δn such that the δi form a basis of DerS,p(logD)
and [δi, δj ] = 0 for all i, j = 1, . . . , n). We remark that we only show the existence
of bases with these properties of Ω1

S,p(logD) and DerS,p(logD) in case D has normal
crossings at p. We do not have a procedure to construct such bases. Thus, strictly
considered, Prop. 6 does not satisfy our requirements on an effective algebraic crite-
rion for normal crossings.

Let D be a divisor in S defined at p by D = {h = 0}. A logarithmic vector field
(or logarithmic derivation) (along D) is a holomorphic vector field on S, that is, an
element of DerS , satisfying one of the two equivalent conditions:
(i) For any smooth point p of D, the vector δ(p) of p is tangent to D,
(ii) For any point p, where (D, p) is given by h = 0, the germ δ(h) is contained in the
ideal (h) of OS,p.
The module of germs of logarithmic derivations (along D) at p is denoted by

DerS,p(logD) = {δ : δ ∈ DerS,p such that δh ∈ (h)}.
These modules are the stalks at points p of the sheaf DerS(logD) of OS-modules. Sim-
ilarly we define logarithmic differential forms: a meromorphic q-form ω is logarithmic
(along D) at a point p if ωh and hdω are holomorphic in an open neighbourhood
around p. We denote

Ωq
S,p(logD) = {ω : ω germ of a logarithmic q-form at p}.

One can show that DerS,p(logD) and Ω1
S,p(logD) are reflexive OS,p-modules (see

[Sai80]). By a Theorem of Aleksandrov [Ale90], (D, p) is free if and only DerS,p(logD)
resp. Ω1

S,p(logD) is a free OS,p-module. The following theorem makes it possible to

test whether D is free (cf. [Sai80, Thm. 1.8]):

Theorem 4 (Saito’s criterion). Let (S,D), p and h be as above. Then Ω1
S,p(logD) is

a free OS,p-module if and only if one has
∧nΩ1

S,p(logD) = 1
hΩ

n
S,p(logD). This means

that there exist n elements ωi ∈ Ω1
S,p(logD) such that

ω1 ∧ . . . ∧ ωn = u
dx1 ∧ . . . ∧ dxn

h
,
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where u is a unit in OS,p, i.e., u ∈ O∗
S,p. Then the ω1, . . . , ωn form an OS,p-basis for

Ω1
S,p(logD) and one can write

Ωq
S,p(logD) =

∑

i1<···<iq

OS,p ωi1 ∧ · · · ∧ ωiq ,

for all q = 1, . . . , n.
A similar statement holds for DerS,p(logD).

In the following the so-called logarithmic residue will be used. It is a tool to study
the structure of the module of logarithmic differential forms along D. It is tightly
connected to the normalization of D. Locally, the residue of Ω1

S,p(logD) is contained
in the ring of meromorphic functions MD,p on D. In some way it measures how far
away a logarithmic q-form is from being holomorphic.
Historically, the study of residues of differential forms was initiated by A. Cauchy in
1825: he considered residues of holomorphic functions in one variable. Later, in 1887,
H. Poincaré introduced the notion of the residue of a rational 2-form in C2. This was
generalized by G. de Rham and J. Leray to the class of d-closed meromorphic q-forms
with poles of first order along a smooth divisor. The modern algebraic treatment of
residues in duality theory is due to Leray and Grothendieck, see for example [Har66].
We will study the logarithmic residue as introduced by K. Saito. More about the
logarithmic residue can be found in [AT01, Ale05, GS14].

Let S be an n-dimensional complex manifold and D a divisor in S given locally at

a point p ∈ S by a reduced equation h ∈ OS,p and denote by π : D̃ → D the
normalization of D. Let OD and MD (resp. O

D̃
and M

D̃
) be the sheaves of germs

of holomorphic and meromorphic functions on D (resp. D̃). Further denote by Ωq
D

(resp. Ωq

D̃
) the sheaf of germs of holomorphic q-forms on D (resp. D̃). One has

OD,p = OS,p/(h)OS,p and Ωq
D,p = Ωq

S,p/(hΩ
q
S,p + dh ∧ Ωq−1

S,p ) and also MD ⊗OD
Ωq
D =

π∗(MD̃
⊗O

D̃
Ωq

D̃
). In particular for q = 0 we have π∗(MD̃

) = MD since π is birational.

Definition 3. Let (S,D), p and h be defined as usual. Let ω be any element in
Ωq
S,p(logD). Then one can find a presentation (see [Sai80, 1.1])

gω =
dh

h
∧ ξ + η,

with g holomorphic and dimOD,p/(g)OD,p ≤ n − 2, ξ ∈ Ωq−1
S,p and η ∈ Ωq

S,p. The
residue homomorphism ρ is defined as the OS,p-linear homomorphism of sheaves

ρ : Ωq
S(logD) −→ MD ⊗OD

Ωq−1
D

ω 7−→ ρ(ω) =
ξ

g
.

We often call ρ(Ω1
S,p(logD)) ⊆ MD,p the logarithmic residue (of D at p).

One can show that the residue homomorphism ρ is well defined, see [Sai80, 2.4]. For
an ω ∈ Ωq

S,p(logD), ρ(ω) is 0 on D if and only if ω ∈ Ωq
S,p. Moreover, ρ(Ωq

S(logD))

is an O
D̃
-coherent submodule of M

D̃
⊗ Ωq−1

D̃
. In particular, the logarithmic residue

ρ(Ω1
S(logD)) contains π∗OD̃

, the ring of weakly holomorphic functions on D.
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For the characterization of normal crossings we start with the following theorem
[Sai80, Thm. 2.9].

Theorem 5 (Saito’s Theorem). Let (S,D) be a pair of a complex n-dimensional man-
ifold and a divisor D ⊆ S. Suppose that locally at a point p the divisor D decomposes
into irreducible components (D, p) = (D1, p) ∪ . . . ∪ (Dm, p). Let h = h1 · · ·hm be
the corresponding decomposition of the local equation of D, each irreducible factor hi
corresponding to Di. Then the following conditions are equivalent:
(i) Ω1

S,p(logD) =
∑m

i=1OS,p
dhi

hi
+Ω1

S,p.

(ii) Ω1
S,p(logD) is generated by closed forms.

(iii) ρ(Ω1
S,p(logD)) =

⊕m
i=1ODi,p.

(iv) (a) For each i = 1, . . . ,m the component Di is normal (i.e.,
dimSingDi ≤ n− 3),

(b) Di intersects Dj transversally for i 6= j and i, j = 1, . . . ,m,
(c) dim(Di ∩Dj ∩Dk) ≤ n− 3 for all i, j, k distinct and i, j, k = 1, . . . ,m.

Example 5. Let D be the divisor in C3 defined by h = xz(x+ z− y2). This divisor is
called Tülle and is studied in more detail in [FH10]. Tülle consists of three compo-
nents, which are smooth, intersect pairwise transversally and whose triple intersection
is a point, see fig. 2. Thus it fulfills the assumption (iv) of Theorem 5. The local ring
OSingD,0 defining the singular locus (SingD, 0) is not Cohen–Macaulay. Note that D
has normal crossings outside the origin, where it is not even free.

Figure 2. Tülle, defined by h = xz(x+z−y2), has normal crossings
outside the origin but is not free at the origin.

Lemma 5. Denote by (S,D) a complex manifold of dimension n together with a
divisor D ⊆ S, and let (D, p) =

⋃m
i=1(Di, p) be the decomposition of D into irreducible

components at a point p in S. Suppose that h = h1 · · ·hm is the local equation of D
at p. Then D has normal crossings at p if and only if the dhi/hi are part of a basis,
whose elements are closed, of the form ω1 = dh1/h1, . . . , ωm = dhm/hm, ωm+1 =
dfm+1, . . . , ωn = dfn of Ω1

S,p(logD), that is,

dh1
h1

∧ · · · ∧ dhm
hm

∧ dfm+1 ∧ · · · ∧ dfn =
c

h
· dx1 ∧ · · · ∧ xn,

where the fi are some suitable elements in OS,p and c ∈ O∗
S,p.
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Proof. If D has normal crossings at p then one can find coordinates x = (x1, . . . , xn)
such that h = x1 · · ·xm is the defining equation of D at p. Then clearly

dx1
x1

, . . . ,
dxm
xm

, dxm+1, . . . , dxn

form a basis of Ω1
S,p(logD). Conversely, suppose that dh1

h1
∧. . .∧ dhm

hm
∧dfm+1∧· · ·∧dfn =

c/h·dx1∧. . .∧xn. This means that the Jacobian matrix of the h1, . . . , hm, fm+1, . . . , fn
has determinant c ∈ O∗

S,p. By the implicit function Theorem the hi and the fi are
complex coordinates at p. Then, by definition D has normal crossings at p. �

Lemma 6. Let D ⊆ S be a divisor in a complex manifold S with dimS = n. Suppose
that D is free at a point p ∈ S and Ω1

S,p(logD) has a basis ω1, . . . , ωn such that

ω1, . . . , ωk, k < n are in Ω1
S,p. Then one can find a local isomorphism (D, p) ∼=

(D′, p′)× (Ck, 0), where (D′, p′) is in (Cn−k, p′).

Proof. Since Ω1
S,p(logD) is free with basis ω1, . . . , ωn, there is a unique basis δ1, . . . , δn

of DerS,p(logD) satisfying ωi · δj = δij . Suppose that 1 ≤ i ≤ k. For all coefficients of
ωi =

∑n
j=1wijdxj and δi =

∑n
j=1 dij∂xj

are holomorphic, one obtains the equation

1 =
n∑

j=1

wijdij .

Since OS,p is a local ring, at least one wijdij , w.l.o.g., for j = 1, is invertible in OS,p,
which implies di1 ∈ O∗

S,p. Applying δi to h, the local defining equation of D, yields

∂x1
h ∈ (h, ∂x2

h, . . . , ∂xnh). The triviality Lemma [Sai80, 3.5] implies that D is locally
isomorphic to some D′ × C. Applying this construction to the remaining ωi, one
arrives at (D, p) ∼= (D′, p′)× (Ck, 0). �

Lemma 7. Let (D, p) =
⋃m

i=1(Di, p) be given by the reduced equation h = h1 · · ·hm
and let ω ∈ Ω1

S,p(logD) be a closed form. Then:

(i) The residue of ω along each branch Di is constant, that is, ρ(ω)|Di
= ci with ci ∈ C

for i = 1, . . . ,m.
(ii) ω can be represented as ω =

∑m
i=1 cidhi/hi + ξ, where ci ∈ C and ξ ∈ Ω1

S,p is
closed.
(iii) If the residue of ω along at least one branch Di is non-zero, then ω can be
represented as

ω =
m∑

i=1

ci
dh′i
h′i

, ci ∈ C,

with h′i = uihi and ui ∈ O∗
S,p. Note that h′i also defines Di and that h′ = h′1 · · ·h′m

also defines D near p.

Proof. (i) is shown in the proof of [Sai80, Thm. 2.9].
(ii): Follows from the fact that ρ(ω) = 0 if and only if ω is holomorphic and the
resulting exact sequence, see [Sai80, 2.5].

(iii): Suppose that ω =
∑m

i=1 ci
dhi

hi
+ ξ, with ci ∈ C, is a closed logarithmic form.

Since we consider germs of differential forms, one can assume (Poincaré’s Lemma)
that ξ = df for some f ∈ OS,p. Now assume that the residue ρ(ω)|D1

is non-zero.
Define h′1 := h1 exp(f/c1). Then h′1h2 · · ·hm also defines D because multiplying with
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a unit does not change the zero-set locally at p. The following holds:

c1
dh′1
h′1

= c1
dh1
h1

+ df = c1
dh1
h1

+ ξ.

Hence we have ω = c1dh
′
1/h

′
1 +

∑m
i=2 cidhi/hi. �

Lemma 8. Let (D, p) =
⋃m

i=1(Di, p) be free at p and let Ω1
S,p(logD) have a basis

ω1, . . . , ωn consisting of closed forms. Then m ≤ n and maximally n−m elements ωi

of this basis are holomorphic forms.

Proof. From Lemma 7 it follows that each closed basis element ωi can be represented
as ωi =

∑m
j=1 cijdhj/hj + dfi with dfi ∈ Ω1

S,p and cij ∈ C for j = 1, . . . ,m. First

suppose that m > n. By Saito’s criterion one knows that
∧n

i=1 ωi =
c

h1···hm
· dx1 ∧

. . . ∧ dxn with c ∈ O∗
S,p. This means that the n-form

∧n
i=1 ωi has a simple pole at

h1 · · ·hm. But forming the wedge product of the ωi of the above form we obtain (by
a simple computation)

∧n
i=1 ωi =

g
h1···hm

· dx1 ∧ · · · ∧ dxn with g ∈ (h1, . . . , hm) ⊆ m.
Thus g is not invertible, which is a contradiction to Saito’s criterion.
For the second assertion suppose that ωi = dfi, fi ∈ OS,p for i = m, . . . , n are
holomorphic, that is, the basis contains n −m + 1 closed holomorphic elements. An
application of Lemma 6 yields an isomorphism (D, p) ∼= (D′, 0) × (Cn−m+1, 0) with
(D′, 0) ⊆ (Cm−1, 0). This means that D′ would be a free divisor with m irreducible
components and with a basis of closed forms in an m − 1 dimensional manifold.
Contradiction to the first assertion of this lemma. �

Proposition 5. Let (D, p) =
⋃m

i=1(Di, p) be free at p and let Ω1
S,p(logD) have a

basis consisting of closed forms ω1, . . . , ωn. Then m ≤ n and ωi can be chosen as
ωi = dh′i/h

′
i where h′i = fihi with fi ∈ O∗

S,p for i = 1, . . . ,m and ωi = dfi with
fi ∈ OS,p holomorphic for i = m+ 1, . . . , n.

Proof. From Lemma 8 it follows that m ≤ n and from Lemma 7 that (ω1, . . . , ωn) can
be represented as

(ω1, . . . , ωn)
T =

(
C 0
0 In−m

)(
dh
h

0

)
+

(
ξ
df

)

with C an m ×m-matrix with entries in C, dh
h = (dh1

h1
, . . . , dhm

hm
)T , ξ = (ξ1, . . . , ξm)T

with ξi ∈ Ω1
S,p and df = (dfm+1, . . . , dfn)

T with fi ∈ OS,p. Elementary linear algebra

computations and an application of Lemma 8 yield that C ∈ GLm(C). Thus one can

assume that (ω1, . . . , ωm) is of the form (dh1

h1
+ ξ′1, . . . ,

dhm

hm
+ ξ′m), where ξ′ = Mξ for

some invertible matrix M ∈ GLm(C). As in Lemma 7 write ωi = dh′i/h
′
i, where for

ξ′i = dfi/fi, fi ∈ O∗
S,p one has h′i = fihi for i = 1, . . . ,m. The change of one hi does

not affect the others. The functions h′i also define the divisor D at p. The assertion
of the proposition follows. �

Proposition 6. Denote by (S,D) a complex manifold with dimS = n ≥ 2 together
with a divisor D ⊆ S and let p ∈ S be a point. The following conditions are equivalent:
(i) D has normal crossings at p.
(ii) Ω1

S,p(logD) is free and has a basis of closed forms.

(iii) DerS,p(logD) is free and there exists a basis δ1, . . . , δn of DerS,p(logD) such that
[δi, δj ] = 0 for all i, j ∈ {1, . . . , n}.
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Proof. (i) ⇒ (ii) is a simple computation (cf. proof of Lemma 5).
Conversely, suppose that Ω1

S,p(logD) has a basis of closed forms. By Proposition 5 we

can assume that (D, p) =
⋃m

i=1(Di, p) has m ≤ n irreducible components and that the
closed basis of ΩS,p(logD) is of the form dh1/h1, . . . , dhm/hm, dfm+1, . . . , dfn, where
hi is the reduced function corresponding to the component (Di, p). By Lemma 5 the
existence of a closed basis of this form is equivalent to (D, p) having normal crossings.
It remains to show (ii) ⇔ (iii): We have

(3) dω(ξ1, ξ2) = ξ1(ω(ξ2))− ξ2(ω(ξ1))− ω([ξ1, ξ2]),

where ω is a differential 1-form and ξ1, ξ2 are vector fields (for this well-known formula
see e.g. [Lan99]). First, suppose that [δi, δj ] = 0 for all pairs (i, j). Plugging any basis
elements δi, δj into a basis element ωk yields dωk(δ

i, δj) = δi(δjk)−δj(δik)−ω(0) = 0.
Hence any basis element ωk is closed. Conversely, if each ωk is closed, it follows from
(3) that ωk([δ

i, δj ]) = 0. Since DerS,p(logD) is closed under [·, ·] and the δ’s form a

basis of DerS,p(logD), the equation [δi, δj ] =
∑

k=1 gkδ
k holds for some gk ∈ OS,p.

Using the OS,p-linearity of ωk we obtain gk = 0 for any k = 1, . . . , n. Since this
equality holds for any i, j, k it follows that [δi, δj ] = 0 for all pairs (i, j). �

Question 3. (1) Construct special bases: we ask for a constructive algorithm for
a closed basis of Ω1

S,p(logD) (resp. a basis of commuting fields of DerS,p(logD)),
which in the first place determines if there exists such a basis.

(2) Construct a minimal system of generators of Ωq
S,p(logD), in particular in the

case where (D, p) is not free.

4. Normal crossings and (dual) logarithmic residue

In this section we present a characterization of normal crossing divisor D by its log-
arithmic residue, denoted by ρ(Ω1

S,p(logD)). It follows from results about the dual

logarithmic residue, which was introduced by Granger and Schulze in [GS14]. They
showed that with the dual logarithmic residue a question by K. Saito [Sai80, DS84]
can be answered, also see Thm. 6.
In [Sai80, 2.8] it is shown that the logarithmic residue of Ω1

S,p(logD) always contains
the ring of weakly holomorphic functions on D. So it is quite natural to ask when the
two rings are the same. For free divisors the answer is surprisingly simple (under the
additional condition that the normalization of D is smooth): ρ(Ω1

S,p(logD)) = π∗OD̃,p

if and only if (D, p) has normal crossings. In general the equality is equivalent to say-
ing that (D, p) has normal crossings in codimension 1 (see Thm. 6).
This section is organized as follows: first we consider examples of divisors (D, p)
with weakly holomorphic logarithmic residue. Then some properties of divisors with
weakly holomorphic residues are studied. Finally we introduce the dual logarithmic
residue in order to prove the theorem.

Suppose that D is a free divisor whose logarithmic residue ρ(Ω1
S(logD)) is equal to

π∗OD̃
. Recall that π∗OD̃

is equal to the normalization ÕD and also to the ring of
weakly holomorphic functions on D. Since we consider free divisors, it is possible to
compute ρ(Ω1

S(logD)) and π∗OD̃
explicitly with a computer algebra system: from a

basis of Ω1
S,p(logD) the logarithmic residue can be computed, and it is also possible

to compute the normalization of D. However, computing normalizations is of high
complexity, so we are confined to low dimensional examples.
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Example 6. Let D ⊆ S with dimS = n be smooth at a point p. Then locally at
p we can find coordinates (x1, . . . , xn) such that D = {x1 = 0}. Since Ω1

S,p(logD)

is generated by dx1

x1
, dx2, . . . , dxn, the residue of a logarithmic form ω = a1

dx1

x1
+∑n

i=2 aidxi is just a1|D and hence ρ(Ω1
S,p(logD) = OD,p, also cf. Thm. 5.

Example 7. Consider the cusp D in C2, given by h = x3 − y2 with coordinate ring

OD,0 = C{x, y}/(x3 − y2). It is well known that ÕD = C{t} with t = y
x . A basis of

Ω1
C2,0(logD) is ω1 = dh

h and ω2 = 1
h(3ydx + 2xdy). Here ρ(ω2) =

x
y = t−1 is clearly

not in C{t}. Thus it follows that Ω1(logD) ) π∗OD̃
.

Example 8. (The 4-lines) In this example, the divisor D is free but does not have
normal crossings outside an (n− 3)-dimensional subset of D. Let D be the divisor in
C3 given at p = (x, y, z) by h = (x+ y)y(x+ 2y)(x+ y + yz). The divisor D is free,
thus one can compute a basis of Ω1

C3,p(logD), namely

ω1 =
dh

h

ω2 =
1

4h
(y(zx+ 9yz + 7x+ 7y)dx− x(zx+ 9yz + 7x+ 7y)dy − (x+ y))y(2y + x)dz)

ω3 =
1

4h
(y(x+ y + yz)dx− x(x+ y + yz)dy)

This basis is the dual to the basis of DerC3,p(logD) given in example 6.2 of [CN02]

(in different coordinates). Here π∗OD̃,p
∼= ÕD,p is isomorphic to

C{x, y, z}/(x+ y)⊕ C{x, y, z}/(y)⊕ C{x, y, z}/(x+ 2y)⊕ C{x, y, z}/(x+ y + yz).

Since dim({h = ∂yh = 0}) = 1, we have ρ(ωi) =
ai2
∂yh

, where ωi =
1
h(ai1dx + ai2dy +

ai3dz) for i = 1, 2, 3. For example the computation of ρ(ω3)|D1
= − 1

4x shows that
the residue of ω3 is not holomorphic in π∗OD̃1,p

. Hence the inclusion π∗OD̃,p
)

ρ(Ω1
S,p(logD)) is strict.

Example 9. Consider the Whitney Umbrella D in C3 given by h = x2−y2z. The nor-

malization D̃ is smooth at the origin and has coordinate ring π∗OD̃,0
= C{x, y, z, t}/(x2−

y2z, yt − x, z − t2) ∼= C{y, t}. One can show that Ω1
C3,0(logD) is generated by

dh/h, ω = (yzdx − xzdy − 1/2xydz)/h and dx, dy, dz. Since ρ(ω) = yz/2x = t/2
it follows that ρ(Ω1

C3,0(logD)) is holomorphic on the normalization. Note that D is

not free.

These examples lead to the following

Proposition 7. Let (S,D) be a manifold of complex dimension n together with a
divisor D ⊆ S. Suppose that D is free at p, that

ρ(Ω1
Sp
(logD)) = π∗OD̃,p

and that (D̃, π−1(p)) is smooth. Then D has normal crossings at p.

First we consider some general properties of divisors with weakly holomorphic residue,
in particular we show that if D is a free divisor in a complex manifold S of dimension
n, having n irreducible components Di at a point p and satisfying ρ(Ω1

S,p(logD)) =

π∗OD̃,p
, then D has normal crossings at p (Corollary to Lemma 11). Then we intro-

duce the dual logarithmic residue and prove Prop. 7 (following Granger and Schulze).
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4.1. Divisors with weakly holomorphic logarithmic residue. Here we first
show an analogue of Theorem 5 (i) ⇔ (iii). Then some properties of π∗OD̃,p

are

considered (Cohen–Macaulayness). Finally we show how to choose “good” generators
for Ω1

S,p(logD) if ρ(Ω1
S,p(logD)) = π∗OD̃,p

and that D is Euler–homogeneous in this

case (Lemma 11).

Proposition 8. Let (S,D) be a divisor D in a complex manifold S of dimension n.
Then the following are equivalent:
(i) Ω1

S,p(logD) = OS,p
〈ω1, . . . ωk〉+Ω1

S,p, such that ρ(ω1), . . . , ρ(ωk) ∈ π∗OD̃,p
generate

π∗OD̃,p
as OD,p-module.

(ii) ρ(Ω1
S,p(logD)) = π∗OD̃,p

.

Proof. The implication (i) ⇒ (ii) is clear, since ρ is a sheaf homomorphism and
ρ(Ω1

S,p) = 0. Suppose now that ρ(Ω1
S,p(logD)) = π∗OD̃,p

. The normalization is a

finitely generated OD,p-module, i.e., π∗OD̃,p
=
∑k

i=1OD,pαi for some αi ∈ π∗OD̃,p
.

The sequence

(4) 0 //Ω1
S,p

//Ω1
S,p(logD)

ρ
//π∗OD̃,p

//0

is exact (cf. [Sai80]). Thus there exist some ωi ∈ Ω1
S,p(logD) such that ρ(ωi) = αi for

each i = 1, . . . , k. Now take any ω ∈ Ω1
S,p(logD). Then ρ(ω) =

∑k
i=1 aiρ(ωi) for some

ai ∈ OD,p. Choose some representatives of the ai ∈ OS,p and define ω′ :=
∑k

i=1 aiωi.
Clearly ω′ ∈ Ω1

S,p(logD) as well as ω−ω′. But ρ(ω−ω′) = 0, so ω−ω′ is holomorphic.

This shows that any ω ∈ Ω1
S,p(logD) can be written as an OS,p-linear combination of

the ωi and some holomorphic form. �

Lemma 9. Let (S,D) be a divisor D in a complex manifold S of dimension n. Sup-
pose that at a point p the divisor is free and and ρ(Ω1

S,p(logD)) = π∗OD̃,p
.

(i) The ring π∗OD̃,p
is Cohen–Macaulay.

(ii) If D additionally is not smooth and does not contain a smooth factor at p, i.e., is
not locally isomorphic to some Cartesian product (D′, p′)×(Ck, 0) for some 0 < k < n,
one may assume that π∗OD̃,p

is minimally generated by n elements αi, where α1 = 1

and αi ∈ π∗OD̃,p
\OD,p for i ≥ 2.

Proof. (i): Under our assumptions, the exact sequence (4) yields a free resolution
of π∗OD̃,p

(as OS,p-module). Since we are working over a regular local ring, it fol-

lows that projdimOS,p
(π∗OD̃,p

) ≤ 1. With the Auslander–Buchsbaum formula follows

depth(mS , π∗OD̃,p
) ≥ n− 1 (where mS denotes the maximal ideal of OS,p). Since the

depth is stable under local homomorphisms, depth(mD, π∗OD̃,p
) ≥ n − 1. First sup-

pose that (D, p) is irreducible, then π∗OD̃,p
is a local ring. Since then OD,p ⊆ π∗OD̃,p

is a finite ring extension it follows that the depth of π∗OD̃,p
as an π∗OD̃,p

-module is

also greater than or equal to n−1. Clearly, dim(π∗OD̃,p
) = n−1 and so the assertion

follows from the height-depth inequality.
If (D, p) =

⋃m
i=1(Di, p), where (Di, p) denote the irreducible components, then π∗OD̃,p

=⊕m
i=1 π∗OD̃i,p

is a semi-local ring with m maximal ideals m
D̃i
, i = 1, . . . ,m. Then

π∗OD̃,p
is Cohen–Macaulay if (π∗OD̃,p

)m
D̃i

∼= π∗OD̃i,p
is Cohen–Macaulay for all

i = 1, . . . ,m. But this follows from the irreducible case since depth(mS , π∗OD̃,p
) =
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depth(mS , π∗OD̃i,p
) for all i = 1, . . . ,m.

(ii): follows from Lemmata 8 and 6 and an application of the Lemma of Nakayama. �

Lemma 10. Let D ⊆ S be a divisor in a complex manifold S. If b is an element in
OD,p that is invertible in π∗OD̃,p

then b is already invertible in OD,p.

Proof. Easy computation. �

Lemma 11. Let D ⊆ S be a divisor in a complex manifold S of dimension n. Suppose
that ρ(Ω1

S,p(logD)) = π∗OD̃,p
. Then dh

h ∈ Ω1
S,p(logD) can be chosen as an element

of a minimal system of generators of Ω1
S,p(logD). If (D, p) =

⋃m
i=1(Di, p), defined by

h = h1 · · ·hm in OS,p then the dhi

hi
form part of a minimal system of generators of

Ω1
S,p(logD).

Proof. Since Ω1
S(logD) is a coherent analytic sheaf, the stalk Ω1

S,p(logD) has a finite
minimal system of generators ω1, . . . , ωk with k ≥ n. One can write

dh

h
=

k∑

i=1

aiωi,

for some ai ∈ OS,p. Taking residues yields

(5) 1π∗OD̃,p
=

k∑

i=1

ai|Dρ(ωi).

First assume that D is irreducible at p. Then π∗OD̃,p
is a local ring and at least one

ai|D has to be invertible in π∗OD̃,p
. By Lemma 10 this ai|D is already invertible in

OD,p. Thus ai(0) 6= 0 and hence ai is contained in O∗
S,p. This implies that dh

h can be

chosen as an element of a minimal system of generators of Ω1
S,p(logD) instead of ωi.

If (D, p) =
⋃m

i=1(Di, p) is the decomposition into irreducible components, equation
(5) reads as follows:

1π∗OD̃
,p =

k∑

i=1

ai|Dρ(ωi) =
m∑

j=1

(
k∑

i=1

ai|Dj
ρ(ωi)|Dj

)
.

Since the sum of the π∗OD̃j ,p
is direct,

1π∗OD̃1
,p =

k∑

i=1

ai|D1
ρ(ωi)|D1

.

Like in the irreducible case, it follows that ai|D1
, wlog. for i = 1, has to be invertible in

π∗OD̃1,p
. Also, it follows that a representative of a1|D1

in OS,p, namely a1, is invertible

in OS,p, so we may exchange ω1 and dh1

h1
. For the remaining dhi

hi
a similar argument is

used. Thus all dhi

hi
can be chosen as part of a minimal system of generators. Clearly,

also dh
h , dh2

h2
, . . . , dhm

hm
can be selected as part of any minimal system of generators. �

Remark 11. Consider D with the assumptions of Lemma 11 and further suppose
that D is free. Then the element dh

h can be chosen as an element of a basis of

Ω1
S,p(logD). Then D is Euler-homogeneous: one can find a δ ∈ DerS,p(logD) such

that δ · dh
h = 1. Hence δ(h) = h. So we have shown that all free divisors D with

π∗OD̃,p
= ρ(Ω1

S,p(logD)) are Euler-homogeneous at p.
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Corollary 2. Let D be a divisor in a complex manifold S of dimension n and suppose
that at a point p, D has n irreducible components (Di, p). If D has weakly holomorphic
residue and is free at p, then D has normal crossings at p.

Proof. Use Lemma 11 and Saito’s criterion. �

4.2. The dual logarithmic residue. The dual logarithmic residue was introduced
by Granger and Schulze in [GS14]. It relates the Jacobian ideal of a divisor with the
conductor ideal of the normalization. Here it will be used for the proof of Prop. 7.

Let (S,D) be a complex manifold S of dimension n together with a divisor D that is

locally at a point p ∈ S given by {h = 0}. Denote by π : D̃ → D the normalization of
D. Here we will abbreviate OS,p to OS etc. By definition there is an exact sequence
(cf. (4))

(6) 0 //Ω1
S

//Ω1
S(logD)

ρ
//ρ(Ω1

S(logD)) //0 .

By applying the functor HomOS
(−,OS) to (6) one obtains

(7) 0 //DerS(logD) //DerS
σ

//ρ(Ω1
S(logD))∨ //Ext1OS

(Ω1
S(logD),OS) //0.

Here −∨ denotes HomOD
(−,OD). By Lemma 4.5 of [DSS+13] one has

Ext1OS
(ρ(Ω1

S(logD)),OS) = HomOD
(ρ(Ω1

S(logD)),OD) = ρ(Ω1

S(logD))∨,

which explains the third term on the right in (7). Then ρ(Ω1
S(logD))∨ is called the

dual logarithmic residue and we denote it shortly by R∨
D.

One can show (see [GS14]) that ρ(Ω1
S(logD)) = J̃∨

h , where J̃h is the ideal generated
by (∂x1

h, . . . , ∂xnh) ⊆ OD, that is, the Jacobian ideal of D.

Proposition 9. Let D ⊆ S be free. If the logarithmic residue is weakly holomorphic,

that is, ρ(Ω1
S,p(logD)) = π∗OD̃,p

, then J̃h ⊆ OD is equal to the conductor ideal CD.

Conversely, if D̃ is Cohen–Macaulay at p and J̃h = CD, then

ρ(Ω1
S,p(logD)) = π∗OD̃,p

.

Proof. See [GS14]. �

Lemma 12. Let D ⊆ S be a divisor in a complex manifold of dimension n. Suppose
that D is free at p, ρ(Ω1

S,p(logD)) = π∗OD̃,p
and that (D, p) =

⋃m
i=1(Di, p), where

each irreducible component Di is normal. Then all (Di, p) are smooth and (D, p) has
normal crossings.

Proof. Since all irreducible components are normal, it follows that ρ(Ω1
S,p(logD)) =⊕m

i=1ODi,p. By Theorem 5 and Proposition 6 (D, p) is a normal crossing singularity.
�

Proof of Prop. 7. Using Prop. 9 it follows (similar to Thm. 1) from Piene’s Theorem
that Ω1

D̃/D
= 0. By [AK70, VI, Prop. 1.18, Prop. 1.20] (localization to an irreducible

component Di and base change) it follows that Ω1
D̃i/Di

= 0 for all i = 1, . . . ,m. Then

using Lemma 12, the remaining proof is similar to the one of Thm. 1. �
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Theorem 5 suggests that ρ(Ω1
S(logD)), the residue of logarithmic 1-forms, is directly

related to the geometry of the divisor D. K. Saito has considered the relationship
between the logarithmic residue and the local fundamental group of the complement
of the divisor. He asked the following, cf. [Sai80, (2.12)]:

Question 4 (K. Saito). Let (S,D) be a manifold with dimS = n together with a
divisor D ⊆ S and let p be a point on D. Are the following equivalent?
(i) The local fundamental group π1,q(S\D) for q near p is abelian.
(ii) There exists an (n − 3)-dimensional analytic subset Z of D, such that D\Z has
only normal crossing singularities in a neighbourhood of p.
(iii) ρ(Ω1

S,p(logD)) = π∗OD̃,p
.

The implications (i) ⇒ (ii) ⇒ (iii) were proven in [Sai80]. In 1985 Lê and Saito
[DS84] gave a topological proof of the equivalence of (i) and (ii). The implication
(iii) ⇒ (ii) was only recently proven by Granger and Schulze [GS14]. Below is a proof
using our Proposition 7. Hence all three conditions are equivalent. There seems to be
no obvious link between the residue and the fundamental group, and nobody seems
to have studied how to prove directly that (i) is equivalent to (iii).

Theorem 6 (Granger–Schulze). Let (S,D) be a complex manifold together with a
divisor D ⊆ S. If the logarithmic residue ρ(Ω1

S(logD)) = π∗OD̃
, then D has normal

crossings in codimension 1.

Proof. By a Theorem of Scheja [Sch64] (also see [ST71]), applied to OSingD, the
divisor D is free outside an analytic subset Z ⊆ S of codimension at least 2 in

D. Since ρ(Ω1
S,p(logD)) = π∗OD̃,p

for all p ∈ S and D̃ is by definition smooth in

codimension 1 it follows from Prop. 7 that D has normal crossings outside an analytic
set of codimension 2 in D. �

Similar to conjecture 1 one asks

Question 5. Is a free divisor that has normal crossings in codimension 1 already a
normal crossing divisor?
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