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Quantum to classical transition from the cosmic background radiation
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We have revisited the Ghirardi-Rimini-Weber-Pearle~GRWP! approach for continuous dynamical evolution
of the state vector for a macroscopic object. Our main concern is to recover the decoupling of the state vector
dynamics for the center-of-mass~CM! and internal motion, as in the GRWP model, but within the framework
of the standard cosmology. In this connection we have taken the opposite direction of the GRWP argument that
the cosmic background radiation~CBR! has originated from a fundamental stochastic hitting process. We
assume the CBR to be a clue of the Big Bang, playing a main role in the decoupling of the state vector
dynamics of the CM and internal motion. In our model, instead of describing a continuous spontaneous
localization~CSL! of a system of massive particles as proposed by Ghirardi, Pearle, and Rimini@Phys. Rev. A
42, 78 ~1990!# the Itô stochastic equation accounts for the intervention of the CBR on the system of particles.
Essentially, this approach leads to a precursor of the master equation for both the CBR and particle degrees of
freedom. The violation of the principle of energy conservation characteristic of the CSL model is avoided as
well as the additional assumption on the size of the GRWP’s localization width necessary to reach the
decoupling between the collective and internal motions. Moreover, realistic estimation for the decoherence
time, exhibiting an interesting dependence on the CBR temperature, is obtained. From the formula for the
decoherence time it is possible to analyze the transition from micro- to macrodynamics in both the early hot
universe and the nowadays cold one. The entropy of the system under decoherence is analyzed and the
emergent ‘‘pointer basis’’ is discussed. In spite of not having imposed a privileged basis, in our model the
position still emerges as the preferred observable as in the CSL model.

PACS number~s!: 03.65.Bz, 05.40.2a
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I. INTRODUCTION

In the last decade several proposals to modify the s
dard Hamiltonian dynamics, ranging from master equati
to stochastic quantum mechanics, have been advanced
to set up a unified description for microscopic and mac
scopic physical phenomena. In the pioneer work by Ghira
Rimini, and Weber@1#, quantum mechanics with spontan
ous localization~QMSL!, the state vector collapse, leadin
from quantum to classical dynamics results from the inst
taneous action of a spontaneous random hitting proc
Such a Poisson process is described by a ‘‘localization’’
erator, a Gaussian function acting on each microscopic c
stituent of any system. The localization operator carries
free parameters; a mean frequencyl and a localization width
a21/2, understood as new constants of nature~the spontane-
ous localizationis argued to be a fundamental physical pr
cess!. Through these basic assumptions the QMSL cons
in an explicit model allowing a unified description for micro
scopic and macroscopic systems. It forbids the occurrenc
linear superposition of states localized in far away spa
regions and induces a dynamics that agree with the pre
tions of classical mechanics.

Pursuing the program of the QMSL model, Diosi@2# pre-
sented an interesting connection between the orig
Ghirardi-Rimini-Weber~GRW! hitting process and a modi
fied Schro¨dinger equation. Another significant achieveme
concerning a dynamical reduction model, a stochastic eq

*Electronic address: miled@power.ufscar.br
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tion for physical ensemble, was reported by Gisin@3#. Next,
Pearle@4# described the QMSL model through an Itoˆ sto-
chastic differential equation. Basically, Pearle replaced
Poisson process of instantaneous hits in the GRW mode
a Markov process described as a stochastic modificatio
the Schro¨dinger equation, so that a continuous evolution
the state vector was accomplished. By considering a spe
choice of the operators defining the Markov process~ex-
pressed in terms of creation and annihilation operato!,
Ghirardi, Pearle, and Rimini@5# have described the mecha
nism known ascontinuous spontaneous localization~CSL!
of systems of identical particles~the QMSL model has con
sistency only in the case of systems of distinguishable p
ticles!.

Other investigations dealing with dynamical reducti
models have recently been considered@6#, among them it is
worth mentioning the model forintrinsic decoherence pro
posed by Milburn@7#. While in the Ghirardi-Rimini-Weber-
Pearle~GRWP! model the addition of stochastic terms in th
Schrödinger evolution automatically destroys the quantu
coherence of the physical properties of the system that a
a macroscopic level, the modification of the Liouville equ
tion proposed by Milburn destroys the coherence even
microscopic level.

In the CSL model the Itoˆ stochastic equation for the evo
lution of the state vector reads

duc&5S 2
i

\
Hdt1dh2

1

2
~dh!2D uc&, ~1!

where dh is a linear self-adjoint operator, whose rando
©2000 The American Physical Society08-1
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fluctuation may increase or decrease the norm of the s
vector. Using the Itoˆ formula ~with the notation udc&
[duc&),

dici25^cudc&1^dcuc&1^dcudc&, ~2!

it is easy to see that Eq.~1! does not conserve the norm o
uc&. Thus, the introduction of a norm conserving nonline
process is mandatory. This process, whose random ope
depends on the state vector, reads

duf&5S 2
i

\
Hdt1dhf2

1

2
~dhf!2D uf&. ~3!

Now, it is necessary to distinguish betweenraw @Eq. ~1!# and
physical@Eq. ~3!# ensembles of state vectors to correctly u
derstand the effect of the non-Hamiltonian terms. To this e
a precept is adopted, namely, that the square norm of e
~unnormalized! state vector represents the weight associa
with that ~normalized! state vector in the ensemble comin
from the Itôstochastic equation@4,5#. This precept is a gen
eralization of the GRW assumption that the frequency of h
is proportional to the squared norm of the state vec
Therefore, in the GRW prescription the quantum theory p
diction about the associated probabilities in a measurem
process is recovered. By considering such a precept for
physical ensemble, the linearity of theraw equation and the
Markov nature of the Itoˆ stochastic process leads to th
physical stochastic differential equation for theN-particle
state vector

duCN&5S 2
i

\
Hdt1Z•dB2

1

2
gZ†

•ZdtD uCN&, ~4!

whereZ[$Zi% are operators on the Hilbert space of the s
tem and the set of random operatorsB[$Bi% is characterized
through a real Wiener process, satisfying the followi
means and correlations over the ensemble

dBi50, dBidBj5gd i j dt. ~5!

The statistical operatorrN5uCN&^CNu of the physical en-
semble and its evolution equation are directly obtained fr
Eq. ~4!; using the Itoˆ calculus in evaluatingdrN /dt one gets

drN

dt
52

i

\
@H,rN#1gZrN•Z†2

g

2
$Z†.Z,rN%, ~6!

which is exactly the Lindblad@8# form for the generator of a
quantum dynamical semigroup.

In the present work our main concern is to achievethe
decoupling between the state vector dynamics of the cen
of-mass (CM) and internal motion of a system of particles. In
the GRWP model thisdecouplingresults from a hypothesi
of spontaneous localization of the system’s wave funct
due to a fundamental stochastic hitting process on the
ticles, which induces anincrease of total mean energy of th
Universeclaimed to be the origin of the cosmic backgrou
radiation ~CBR!. Contrary to this argument, in the prese
work we assume the point of view of standard cosmolo
01210
te

r
tor

-
d
ch
d

s
r.
-
nt
he

-

r-

n
r-

:

the present CBR is a clue that the universe began its ex
sion from a Big Bang@10#. This assumption is introduce
with the purpose to avoid the unconventional increase of
total mean energy of the universe. Formally, we hypothes
that the state vector, the HamiltonianH, and operatorsZ,Z†

in Eq. ~4! represent both the system of particle and CB
radiation; the set of random functions$Bi% describes the in-
tervention of the CBR on the system and substitutes
spontaneous localization process. Instead of elaborating
the formal microscopic problem of the interaction of a sy
tem with a reservoir@9#, we assumead hocthat the evolution
of the system of particles, under the influence of the CBR
described by an Itoˆ equation having stochastic coupling p
rameters.

Therefore, in the presentconservativecontinuous reduc-
tion model ~the total energy of system plus CBR is co
served! we argue that~1! the increase or decrease of th
system’s mean energy is attributed to the CBR;~2! the posi-
tional space is not privileged with respect to the moment
space, as required when the localization operator is involv
~3! we do not claim for anadditional assumptionto decouple
the collective and internal motion, namely, the width para
eter a21/2;1025 cm in the CSL model;~4! as mentioned
above, more admissible results are obtained for decoher
times, while in the CSL model the value 1027 s obtained for
a system of particles to undergo from quantum to class
dynamics seems to be too large~as well as the localization
width a21/2;1025 cm also seems too large when consid
ing typical atomic distances of about 1028 cm, or even su-
perposition of the center-of-mass coordinate different
more than abouta21/2 @11#!. Finally, ~5! instead of the two
free parameters required in the GRWP model (a21/2 and the
mean frequencyl), the random function describing the in
teraction between the system and the CBR carries ju
single strength parameter with dimension of inverse of tim
In fact, the coupling constant of the CBR photons to t
N-particle system, as the strength parameter in the GR
model, defines the inverse of a characteristic time, which
associated to the net effect of the random pseu
‘‘potential’’ dh @12#. Also, as in the GRWP model, ou
strength parameter is small such that nothing changes in
Hamiltonian dynamics of a single particle even in the case
which it has an extended wave function@5#.

Finally, we mention that Joos and Zeh@13#, have previ-
ously argued that scattering of photons even at a relativ
low temperature can induce the localization of the wa
packet of a macroscopic system. So, their treatment, ba
on a master equation proposed by Wigner@14#, suggests that
the intergalactic cold CBR cannot simply be neglected@15#.
The model here presented goes exactly on this point, i.e.
consider the process of random scattering of the CBR p
tons by a system of particles as responsible for the supe
lection rules and the micro- to macrotransition of its dynam
cal description. In this way, despite inducing th
superselection rules the CBR also induces the mechanis
separating the center-of-mass~CM! coordinate from the in-
ternal motion. Besides, we present a brief cosmolog
analysis of our results, discussing the roles played by b
the CBR temperature and the number of particles of the s
8-2
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QUANTUM TO CLASSICAL TRANSITION FROM THE . . . PHYSICAL REVIEW A 62 012108
tem, in its way from quantum to classical dynamics, as
universe evolved from a hot to a cold state.

In Sec. II we briefly review the GRWP model presenti
its main achievements. In Sec. III we construct our mod
beginning from an Itoˆ stochastic equation we derive a pr
master equation for a system ofN particles and the CBR
Tracing over the CBR degrees of freedom we obtain a ma
equation for the system of particles only and in Sec. IV
show that structurally it shows exactly the Lindblad form.
Sec. V we estimate the coupling parameter and in Sec. VI
estimate the decoherence time for the system of particle
Sec. VII we show that at low temperature limit our mas
equation and the GRWP Itoˆ equation are equivalent, thus th
last one is a particular situation of the former; these eq
tions allow the decoupling of the state vector dynamics i
two separate equations, one for the CM and the other for
internal motion. In Sec. VIII we calculate the entropy a
analyze the problem of selection of a preferred basis. Fina
in Sec. IX we present a summary and conclusions.

II. GHIRARDI-RIMINI-WEBER-PEARLE MODEL

As explained in the Introduction, in the CSL model th
random operatordh contains in its definition the length pa
rametera21/2 and a strength parameterz, which is related to
the mean hitting frequencyl. In this section we present
brief review of the CSL model as a class of Markov pr
cesses in Hilbert space@5#. We will consider a system ofN
identical particles so that the localization operator must
volve globally the whole set of particles in order to prese
the symmetry properties of the wave function@16#. For this
purpose let us consider the creation and annihilation fi
operatorsa†(q,s), a(q,s) of a particle at the pointq in some
reference frame with spin components, satisfying the ca-
nonical commutation or anticommutation relations. Fro
these operators a locally averaged number density opera
defined as

N~x!5S a

2p D 3/2

(
s
E d3q expF2

1

2
a~q2x!2G

3a†~q,s!a~q,s!. ~7!

The operatorN(x) is self-adjoint and its commutator for dif
ferent values ofx vanishes. The total number operator
defined asN5*d3xN(x), and the symmetrized~antisymme-
trized! states containingn particles at the indicated position

uq,s&5Na†~q1 ,s1!•••a†~qn ,sn!u0&, ~8!

constitutes the normalized common eigenvectors relate
the eigenvalue equationN(x)uq,s&5nxuq,s&, with

nx5S a

2p D 3/2

(
i 51

N

expF2
1

2
a~x2qi !

2G . ~9!

Applying @5,16# the stochastic process established by E
~4! to a system of identical particles and considering
01210
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locally averaged density operator defined by Eq.~7!, one gets
the physical stochastic nonlinear differential equation for
state vector as

ducN&5F2 iHdt1E d3xN~x!dB~x!

2
1

2
zE d3xN2~x!dtG ucN&, ~10!

where the Wiener processB(x) satisfies

dB~x!50, ~11a!

dB~x!dB~y!5zd3~x2y!dt. ~11b!

From Eq.~10! the evolution equation of theN-particle sta-
tistical operator obtained from Itoˆ calculus reads

]rN

]t
52 i @H,rN#1zE d3xN~x!rNN~x!

2
1

2
z H E d3xN2~x!,rNJ ~12!

and it can be checked that takingl5z(a/4p)3/2, Eq. ~12!
reduces to the correspondent equation for a single par
considered in the QMSL model.

To discuss the physical implications of the modified d
namical equation~10!, the separation of the CM motion wil
be made. IfQ is the CM coordinate of the system andq̃i its
internal coordinates~measured from the CM of the particles!,
one can define the particle coordinates as

qi5Q1q̃i~$r i%!, ~13!

where$r i% represents a set of 3N23 independent variables
In the GRWP model the set$r i% does not contain macro
scopic variables. As a consequence, assuming that
Hamiltonian can be written asH5HQ1Hr i

, we consider the
wave function

f~q,s!5C~Q!x~r i ,s!, ~14a!

x~r i ,s!5S A
BDD~r i ,s!, ~14b!

where the symbol (B
A) specifies the symmetrization or ant

symmetrization of the internal coordinate wave function. U
der the assumption that the length parametera21/2 is such
that the internal wave functionD(r i ,s) is sharply peaked
around the valuer i0 of r ~with respect toa21/2), the action
of the operatorN(x) on the wave function~14a! turns out to
be

N~x!C~Q!x~r i ,s!5F~Q2x!C~Q!x~r i ,s!, ~15!

with
8-3
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F~Q2x!5(
i

S a

2p D 3/2

expH 2
1

2
a@Q1q̃i~r0!2x#2J .

~16!

Therefore, the operatorN(x) acts only onC and the sepa-
rately normalized wave functionsC andx satisfy the equa-
tions

dC5F2 iH Qdt1E d3xF~Q2x!dB~x!

2
1

2
zE d3xF2~Q2x!dtGC, ~17a!

dx52 iH r i
xdt. ~17b!

By assuming a large enough length parameter and an
ternal wave function, which is independent of the mac
scopic variables, the internal motion decouples as in the
sence of the stochastic terms in Eq.~10!. From this fact, the
reduction rates, which are characteristic of the GRWP the
together with the position and momentum spreading, can
obtained. In particular, in the positional representation of
~12!, it is possible to verify with the help of the macroscop
density approximation and the sharp scanning approxima
@5#, that the macroscopic frequency associated to the sys
of identical particles is

G5zD0nout . ~18!

Here a homogeneous macroscopic body of densityD0 was
considered andnout is the number of particles of the body
position Q8 that do not lie in the volume occupied by th
body at positionQ9. In the case of distinguishable particle
one gets the direct result

lCM5nl, ~19!

n being the total number of particles, so that for a typic
macroscopic numbern'1023, one obtainslCM'1027s, as
mentioned above.

The position and momentum spreading obtained from
approximations leading to Eq.~18!, are written as

^Qi
2&5^Qi

2&s1zd i

\2

6M2
t3, ~20a!

^Pi
2&5^Pi

2&s1
1

2
zd i\

2t, ~20b!

where the suffixs indicates the Schro¨dinger evolution, and

d i5E d3yS ]F~y!

]yi
D 2

. ~21!

Now, using the macroscopic density approximation a
plied to the identical particles system, Eq.~16! is modified to
01210
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F~Q2x!5E d3ỹD~ ỹ!S a

2p D 3/2

expF2
1

2
a~Q1 ỹ2x!2G ,

~22!

whereD(y) is the number of particles per unit volume in th
neighborhood of the pointy5Q1 ỹ. The evaluation of the
factor d i for the case of a homogeneous macroscopic b
containing theN particles through the Eq.~22! gives the
result @5#

d i5~a/p!1/2D0
2Si , ~23!

whereSi is the transversal section of the macroscopic bo
From Eq.~20b! it is evident that the momentum varianc

implies that the CM energy increases per unit time as

DE

t
5

zd i\
2

M
;10232~g cm s21!Si cm22, ~24!

with the GRWP choicea21/2;1025 cm together withD0
;1024 cm23. From the requirement that the macroscop
frequency associated to the system of identical particles
~18! is exactly the same as for distinguishable particles
~19!, GRWP have chosenz;10230 cm3 s21.

III. DECOHERENCE FROM THE COSMIC
BACKGROUND RADIATION

Our approach uses the stochastic dynamical equation~4!,
where we identify the continuous component~in frequency
space! of the operator responsible for the interaction of t
N-particle system to the CBR as

Z~V![(
k51

N

@A~V!ak
†1A†~V!ak#, ak5~ak,x ,ak,y ,ak,z!.

~25!

where

ak5
1

A2\mv
~mvqk1 ipk!, ~26!

and ak
† is its Hermitian conjugate (@ak,i ,ak8, j

†
#5dk,k8d i , j ,i

5x,y,z), qk andpk are, respectively, position and mome
tum operators of thekth particle of massm. \v is a charac-
teristic energy of the system of particles associated to
quantum fluctuation of the CM. The operatorsA†(V),A(V)
stand for the creation and annihilation of a quantum of
ergy \V from the environment. The coupling parameter
defined by the continuous stochastic Wiener processB(V)
satisfying

dB~V!50, ~27a!

dBi~V!dBj~V8!5g~V!d i , jd~V2V8!dt, ~27b!

with g(V)5LG(V) accounting for a strength parameterL
and a frequency distribution functionG(V). Note thatG(V)
refers to the effective frequency distribution of the CBR ph
8-4
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QUANTUM TO CLASSICAL TRANSITION FROM THE . . . PHYSICAL REVIEW A 62 012108
tons, which interact with the system of particles at ene
around\v. We next consider the system of particles a
CBR interacting almost resonantly with Lorentzian spectr

G~V!5
1

p

tc

tc
2~V2v!211

. ~28!

In view of Eq. ~28! it follows from the Fourier transform o
Eq. ~27b! that

dBi~ t !dBj~ t8!5
L

2p
eiv(t2t8)e2(t2t8)/tcdt, ~29!

where the correlation timetc defines the memory time ove
which the stochastic function changes appreciably. From
~29! we conclude that when consideringtc extremely short,
i.e., much less than all other times of interest~evolution of
the particle system! so that in a good approximatio
dBi(t)dBj (t8);d(t2t8)dt, the system is Markovian
Through Eqs.~27a! and ~27b! the physical stochastic differ
ential equation~4! reads

duCN1CBR&5H 2
i

\
HN1CBRdt1E dV(

k51

N

@A~V!ak
†

1A†~V!ak#•dB~V!2
L

2 E dVG~V!

3F (
k51

N

~A~V!ak
†1A†~V!ak!G2

dtJ
3uCN1CBR&. ~30!

It must be emphasized that Eq.~30! describes the evolution
of the state vector of system ofN particles and CBR differ-
ently from the stochastic differential equation in the CS
model. The HamiltonianHN1CBR in this equation describe
the free evolution of the system of particles and CBR, wh
the two remaining terms account for the stochastic inter
tion between the CBR and the particles.

By defining both, the Wiener processdB and the operator
Z depending on the CBR frequency space, the positio
space will not be anymore privileged with respect to t
momentum space, as occurs in the CSL model. We n
proceed to the separation of the CM motion of the modifi
dynamical equation~30!. The substitution of the operator
ak

† ,ak as position and momentum operatorspk ,qk , permits
us to express Eq.~30! in terms of the CM coordinate
QÄ(1/N)(kqk andP5(kpk as

duCN1CBR&5H 2
i

\
HN1CBRdt1E dV@A~V!X†

1A†~V!X#•dB~V!2
L

2 E dVG~V!

3@A~V!X†1A†~V!X#2dtJ uCN1CBR&.

~31!
01210
y
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where the operatorX accounting for the macroscopic obje
reads

X5
1

A2\mv
~NmvQ1 iP!, ~32!

while X† is its Hermitian conjugate. These operators sati
the commutation relation@Xi ,Xj

†#5Nd i , j 1̂ . As mentioned
earlier the coupling constant of the interaction between
CBR and the system of particles defines a characteristic t
L21, which is associated to the net effect of the rando
‘‘pseudopotential’’ described by the last two terms on t
right-hand side of Eq.~31!.

As the stochastic operator in Eq.~31! automatically acts
only on the joint wave vector of the CM degree of freedo
and the CBRuCCM1CBR&, the separately normalized sta
vectors uCCM1CBR& and uf$r i %

&, the latter for the internal
degrees of freedom, satisfy the equations

duCCM1CBR&5F2
i

\
HCM1CBRdt1E dV@A~V!X†

1A†~V!X#•dB~V!2
L

2 E dVG~V!

3@A~V!X†1A†~V!X#2dtG uCCM1CBR&,

~33a!

duf$r i %
&52 iH

$r i %
uf$r i %

&dt. ~33b!

It should be noted that the above Eqs.~33a! and ~33b!, dif-
ferent from those in the CSL model@Eqs.~17a! and ~17b!#,
involve also the CBR degrees of freedom. As will be sho
later, the present approach in the low-temperature limit
lows us to obtain separately the normalized wave functi
for the system of particles,uCCM& and uf$r i %

&, satisfying
equations similar to those in the CSL. Next, from Eq
~6! and ~31! the statistical operator rN1CBR

5uCN1CBR&^CN1CBRu reads

drN1CBR

dt
52

i

\
@HN1CBR,rN1CBR#

2
L

2 E dVG~V!†$@A~V!X†

1A†~V!X#2,rN1CBR%22@A~V!X†

1A†~V!X#•rN1CBR@A~V!X†1A†~V!X#‡,

~34!

which is a precursor to the master equation in that it conta
operators from both theN-particles system and the CBR
allowing to calculate correlations between operators of a s
tem of particles and CBR. However, since we only have
our disposal the statistical properties of the CBR field,
obvious procedure is to trace over the CBR degrees of f
8-5
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dom, considered thermalized at temperatureT, which leads
to the reduced density operator of the system of partic
only, containing the average number of photons of the C
as a parameter.

Back to Eqs.~29!, when the following assumptions ar
met ~i! a short correlation timetc (!L21), leading to the
Markovian approximation; ii! the interaction between th
system of particles and CBR sufficiently small~exactly the
purpose at hand!, the density operator of the global syste
can be written asrN1CBR(t)5rN(t) ^ rCBR(t)1rcorrel(t),
where the correlation termrcorrel can be neglected@17#. By
considering the thermalized CBR density operatorrCBR
5exp@2bHCBR(A

†,A)#/Tr$exp@2bHCBR(A
†,A)#%, with b

5kBT, kB being the Boltzmann’s constant andT the CBR
temperature, we find the master equation for theN-particle
system

drN

dt
52

i

\
@HN ,rN#2

L

2 E d~V!G~V!$@X†
•,XrN#

1@rNX†
•,X#1 ^n&V~†X†

•,@X,rN#‡

1†X•,@X†,rN#‡!%, ~35!

whererN is the reduced density operatorof the N-particle
system and̂n&V51/@exp(b\V)21# is the thermal average
photon number.

As time goes on, it is expected that the stochastic c
pling induces theN-particle system to a thermal equilibrium
with the CBR. By evaluating the rate of energy change
tween the system and the CBR we shall estimate the stre
parameterL and improve our understanding about the nat
of this stochastic coupling. In order to estimate the ene
mean-value let us consider the mean value of a generic
namical variableV whose equation of motion is obtaine
through Eq.~35! as

d^V&
dt

52
i

\
Tr~@V,HN#rN!2

L

2 E d~V!G~V!Tr$†@V,X†#•X

1X†
•@X,V#1^n&V~†@V,X†#•,X‡

1†@V,X#•,X†
‡!‡rN%, ~36!

By applying Eq.~36! to the position and momentum var
ables consecutively, we observe that not only the pure Sc¨-
dinger evolution is modified but also the results from t
CSL model, such that the equations of motion become

d^Q&
dt

5
1

M
^P&2

1

2
NL^Q&, ~37a!

d^P&
dt

52
1

2
NL^P&. ~37b!

These equations lead to the results^P& t5exp(21
2NLt)^P&s

and^Q& t5exp(21
2NLt)^Q&s , where the subscripts indicates

the pure Schro¨dinger evolution: ^P&s5^P& t50 and ^Q&s
01210
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5^Q&01^P& t50 /Mt. ForV5Q2,Q•P1P•Q andP2 succes-
sively, the equations of motion for the mean values beco
respectively,

d^Q2&
dt

5
1

M
^Q•P1P•Q&2NL^Q2&

1
3\L

2mvE dVG~V!~112^n&V!, ~38a!

d^Q•P1P•Q&
dt

5
2

M
^P2&2NL^Q•P1P•Q&, ~38b!

d^P2&
dt

52NL^P2&1
3N2Lm\v

2 E dVG~V!~112^n&V!,

~38c!

which differ from the pure Schro¨dinger evolution sinceL
Þ0.

IV. MASTER EQUATION AND ITOˆ DYNAMICS

It will be useful to be reminded of the conventional trea
ment of the problem of interaction of anN-particle system
with the reservoir (R). Under the HamiltonianH5HN
1HR1V, V being the interaction between both systems,
reduced density operator of theN-particle system,rN(t)
5TrR@rN(t)#, evolves, up to the second order in the intera
tion, according to the generalized master equation@18#

drN~ t !

dt
52

i

\
@HN ,rN~ t !#

2
1

\2
TrRE

0

t

†V,e2 iL 0(t2t8)@V,rN~ t8!rR#‡dt8,

~39!

whereL0(•)[@HN1HR ,•# is the Liouvillian operator of the
free Hamiltonian. The second term in Eq.~39!, acting as a
source of noise for the system and also as a sink~or source!
of energy, is responsible for the irreversibility of the proce
and the loss of coherence inrN(t). As such, the Itoˆ calculus
is justified when the stochastic terms are introduced into
Schrödinger equation. So, the CBR is responsible for t
variation of the mean energy of the system and the incre
of entropy. As shown by Isaret al. @19#, choosing conve-
niently the interaction termV it is possible to obtain Eq.~35!
~the Lindblad form! from Eq. ~39!.

It is worth noting that the master equation~35! can be
written as

drN~ t !

dt
52

i

\
@HN ,rS~ t !#1 (

n51

2

S@cn#rN~ t !, ~40!

where the superoperatorS@cn# is defined as

S@cn#rN5cn•rNcn
†2

1

2
$cn

†
•cn ,rN%, ~41!
8-6
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with c15@L*dVG(V)^n&V#1/2X† andc25@L*dVG(V)(1
1^n&V)#1/2X. Written as in Eq.~40! our master equation
resembles the Lindblad form for the decay of a mode of
eletromagnetic field inside a cavity@20#.

In summary, we have assumedad hocthat the evolution
of the system of particles in its way from quantum to clas
cal dynamics, under the influence of the CBR, is descri
by an Itôstochastic equation. However, here we showed
the usual master equation formalism can be viewed as a
dynamics of the Itoˆ dynamics, without any need to use pe
turbation methods as is done in the conventional derivat

V. STRENGTH PARAMETER

Back to the equations of motion~38!, their solutions are

^Q2&5^Q2&se
2NLt2

3I\v

M F t

NL S 12
NLt

2 De2NLt

2S 1

N2L2
1

1

2v2D ~12e2NLt!G , ~42a!

^$Q,P%&5^$Q,P%&se
2NLt

23I\vF te2NLt2
1

NL
~12e2NLt!G ,

~42b!

^P2&5^P2&se
2NLt1

3INm\v

2
~12e2NLt!, ~42c!

where

^Q2&s5^Q2&01
1

M S ^$Q,P%&0t1
1

M
^P2&0t2D , ~43a!

^$Q,P%&s5^$Q,P%&01
2

M
^P2&0t, ~43b!

^P2&s5^P2&0 . ~43c!

The effect of the CBR temperature is present in the integ
I5*dVG(V)(112^n&V). It is worth noting that the time
evolution of the operators in Eqs.~42! does not show the
additive property with respect to the Schro¨dinger terms as
obtained in the CSL model. As a consequence, Eq.~42c!
differs from the corresponding one in the CSL model, E
~20b!, because instead of the diffusion inducing a steady
crease of the mean value of the kinetic energy, the pre
model exhibits, asymptotically, thermalization due to t
CBR,

^K&5~^K&s2Keq!e
2NLt1Keq , ~44!

where the equilibrium kinetic energy readsKeq53I\v/4.
So, v is a characteristic frequency proportional to the th
malized mean kinetic energy of the CM.

As mentioned above, in the CSL model the localization
a single particle of the system is sufficient to localize t
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whole system; as a consequence, the CM energy incre
linearly with the ‘‘interaction’’ parameterNLt. However,
from Eq. ~44! we conclude that the stochastic coupling a
counts for a CM energy, which grows or decays expon
tially with NLt, depending on the negative or positive val
for ^K&s2Keq , respectively.

In order to estimate the strength parameterL, from Eq.
~44! we assume that the relaxation time follows from t
relation (̂ K&s2Keq)e

2NLtR;Keq , so that

L'
1

NtR
lnS ^K&s2Keq

Keq
D . ~45!

For a system ofN'1023 particles initially at room tempera
ture the equipartition energy theorem gives a mean kin
energy^K&s;109 erg. The integralI accounting for the ef-
fect of the temperature of the CBR has been estimated in
Appendix for btc!\, with vtc&1. The result I;1
12^n&v holds for both low- and high-frequency regime
So, we find for the equilibrium energy at the low-frequen
regime (\v!kBT, so that ^n&v;kBT/\v), Keq;kBT
;10216 erg. At the high-frequency regime (\v@kBT), the
equilibrium energy obeysKeq@kBT. ~We are referring to
low- and high-frequency regimes since the present CBR t
perature,T'3 K, is assumed!. Taking Keq at the low-
frequency regime~in fact, due to the ln function, choosin
Keq in low or high frequency will not change appreciably th
value of L), and the relaxation timetR of the order of the
age of the universe, about 1016 s ~what seems to be reason
able when considering, as obtained below, such a small c
pling of the system to the CBR!, we get

L'10238 s21, ~46!

a value to be compared with the above-mentioned coup
in the CSL modelz;10230 cm3 s21. Thus, the parameterL
is of the order of the upper limit of the excitation rate f
nucleons estimated by Pearle and Squires@21#, by compari-
son with a neutrino-induced process. As already pointed
such a value hardly affects the dynamics of a microsco
particle.

VI. WAVE-PACKET REDUCTION RATES

Back to Eq.~35!, in the CM positional representation, th
density matrixrN(Q,Q8) evolves according to the differen
tial equation

]rN~Q,Q8,t!

]t
5H 2

\

2iM S ]2

]Q2
2

]2

]Q82D 2DF ~Q2Q8!2

2
\2

~Mv!2 S ]

]Q
1

]

]Q8
D 2G

2
1

2
NLF S Q•

]

]Q8
1Q8•

]

]QD 21G J
3rN~Q,Q8,t!. ~47!
8-7
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de OLIVEIRA, ALMEIDA, MIZRAHI, AND MOUSSA PHYSICAL REVIEW A 62 012108
The first term on the right-hand side comes from the co
mutator in Eq.~35!, the terms multiplied by the diffusion
constantD5NMLv(112^n&v)/4\ ~as well as the remain
ing terms, which are independent of temperature! account for
the fluctuations~or random kicks! and for the energy change
due to the stochastic coupling, respectively.

To analyze the wave-packet reduction rates we will
consider Eq.~47! in detail, since the effect of the secon
term on quantum superposition will be of much greater
terest@22#. For a brief estimation of the off-diagonal matr
elements Eq.~47! will decay exponentially as

^QurS~ t !uQ8&5e2zt^QurS~0!uQ8&, ~48!

wherez5D(DQ)2 and (DQ)25(Q2Q8)2. It follows from
Eq. ~48! that the quantum coherence of a macroscopic s
tem will disappear on a decoherence time scale

tD'
1

D~DQ!2
5

1

~112^n&v!

\

NMLv~DQ!2
. ~49!

Analyzing Eq.~49! in terms of the CBR temperature, it i
interesting to note that in the low-temperature limit~the
present universe,T;3 K), i.e., ^n&v→0, the number of
particlesN plays a crucial role in the decoherence proc
induced by the CBR. In the high-temperature limit, i.
^n&v→` ~the early universe in the present model!, we con-
clude that Eq.~49! leads from quantum to classical physi
even in a system composed by a small number of partic
This is a key result, which helps support the assumpti
considered in the present model.

Let us now estimate the decoherence time for both a m
roscopic and a microscopic object in the present unive
i.e., T;3 K. In order to compare our results with that pr
sented in the literature, we consider the low-frequency
gime, such that Eq.~49! reduces to

tD'
1

D~DQ!2
5

\2

2NLMkBT~DQ!2
. ~50!

By considering a system ofN (;1023) hydrogen atoms with
massM'1 g and separationDQ'1 cm, quantum coher
ence would be destroyed intD'10224 s. Such a value turns
to be significantly smaller than the one obtained by GRW
lCM'1027 s, Eq.~19!, and comparable with that obtaine
through the linear response model of Caldeira and Leg
~CL! @23#, where, also at the low-frequency regime,tD /tR
'\2/2mkBT(DQ)2, tR being a relaxation time. For th
above-mentioned system ofN atoms, and assumingtR
'1016 s, as we have done to obtainL, Eq.~45!, we get from
CL modeltD'10223 s. So, Eq.~49!, and consequently Eq
~50!, arise from a theory that, despite assuring the esse
character of the GRWP model, gives a more realistic va
for the decoherence time of a macroscopic object.

As far as a microscopic object is concerned, for exam
a single atom,m'10224 g on atomic scaleDQ'1028 cm,
we observe the persistence of quantum coherence sinctD
'1041 s. Finally, we note that when considering a tiny W
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ber bar@24,22#, DQ'10219 m, at cryogenic temperatures
T'1023 K, we also observe the persistence of quantum
herence from Eq.~49!, as should be expected.

Back to Eq.~48!, when interpreting the exponential dam
ing factor z by the light of the CSL model@Eqs. ~18! and
~19!#, we conclude that the strengthL plays the role of a
microscopic frequency hitting parameter.

VII. CM AND INTERNAL MOTION

By construction we assumed that the CBR acts only
the CM coordinates of the system of particles. Such an
sumption automatically decouples the dynamics of the c
lective and internal motions in the master equation~35!.
Next, we show that even the vector state dynamics for
CM and the internal motion decouple, as in the CSL mod
Of course, our analysis will be restricted to the low
temperature limit where, as obtained in Eq.~49!, the macro-
scopic character of the system becomes really important
to the number of particlesN. In this limit Eq. ~35! simplifies
to

drN

dt
52

i

\
@HN ,rN#1LX•rNX†2

L

2
$X†

•X,rN%.

~51!

The stochastic differential equation for the state vector of
system of particles, which leads to Eq.~51!, can be written as

duCN&5S 2
i

\
HNdt1X•dW2

L

2
W†

•Wdt D uCS&,

~52!

now with the Wiener processdWi50, dWidWj5Ld i j dt.
The assumption made in the CSL model, that the set$r i%

in Eq. ~13! does not contain macroscopic variables, impl
that the state vector for the macroscopic object factorize
CN($qk%)5cCM(Q)f int($r i%). The additional assumption
that the CM motion is decoupled from the internal degrees
freedom means that the Hamiltonian must be written a
sum of two terms, HN5HCM1Hint @5#. Under these
assumptions the Itoˆ calculus, dCN5d(cCMf int)
5(dcCM)f int1cCM(df int)1(dcCM)(df int), shows that
the wave functionscCM(Q) and f int(r i), similar to Eqs.
~17a! and ~17b!, satisfy equations

ducCM &5S 2
i

\
HCMdt1X•dW2

L

2
W†

•WdtD uCCM&,

~53a!

duf int&52
i

\
Hintuf int&dt. ~53b!

The stochastic terms do not affect the internal structure of
system of particles, i.e., nothing changes in the Schro¨dinger
dynamics of microscopic particles. It is worth noting that
the CSL model the additional assumption of a large eno
localization width parameter~besides an internal wave func
tion independent of macroscopic variables! is necessary to
8-8
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QUANTUM TO CLASSICAL TRANSITION FROM THE . . . PHYSICAL REVIEW A 62 012108
decouple the dynamics ofcCM from f int . In fact, as shown
in Ref. @11#, a width parameter of order of atomic size lea
to the breakdown of the translational symmetry of the sys
and the interaction between the CM and the relative coo
nates~i.e.,H5HCM1Hint1V!, has to be taken into accoun
However, in the present model, since we have assumed
the CBR acts only on the CM coordinates of the system
particles, no additional conjectures were requested abou
random operatorZ(V), Eq. ~25!, to achieve the remarkabl
result of the CM decoupling from the internal motion, as
the stochastic terms in Eq.~35! were absent. The operato
Z(V) has thus the advantage of not needing additional c
jectures about the width parameter of the localization p
cess.

VIII. DECOHERENCE AND ENTROPY

The decoherence process resulting from the interactio
the state vector for a macroscopic object with the CBR
be quantified by the rate of increase of either the linear or
statistical entropy. In terms of the density matrix, the sta
tical entropy, a measure of our ignorance, is defined as@25#
Ss52Tr@r ln(r)# ~the subscripts refers tostatistical!. This
definition does not require that the system be in a ther
equilibrium state. Alternatively, a good measure of the lo
of purity for states of an evolving open system is based
the increase of the linear entropy~subscriptl ) @26#

Sl5Tr~r2r2!. ~54!

Next, we estimate the rate of increase of the linear entr
through the evolution of the density matrix given in the o
erator form by Eq.~47!. Considering a weak strength param
eter (L'0) and the state vector remaining approximat
pure (Trr2'1), up to first order inL we obtain

Ṡl54DS ^~DQ!2&1
1

~Nmv!2
^~DP!2& D , ~55!

where ^(DQ)2& and ^(DP)2&, obtained from Eqs.~42a!–
~43c!, stand for the variances of the position and moment
operators and can be rewritten as function of their ini
values^Q&0 and ^P&0.

In order to better understand the rate of increase of
linear entropy in Eq.~55!, it is worth comparing it with that
obtained by Zurek@26# who used the linear response mod
of Caldeira and Leggett@9# ~in the high-temperature limit!.
With the above approximations Zurek obtainedṠl
54D^(DQ)2& ~for a single oscillator!, so that the rate of
increase of linear entropy~in quantum Brownian motion! is
proportional to the dispersion in position coordinate only
the preferred observable singled out by the interact
Hamiltonian. In our approach, from Eq.~55! we observe that
no preferred observable emerges from the dynamic equa
~35! ~the dispersion in momentum is also present!, contrary
even to the CSL model where the position representatio
taken from the outset as privileged. However, for a la
number of particles (N@1), Eq. ~55! indicates that the dis
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persion in momentum is considerably smaller when co
pared with that in position which, in this situation, emerg
as the preferred observable.

In the weak-coupling limit we integrate Eq.~55! replacing
the general evolution in Eq.~35! by the free von Neumann
equation to obtain

Sl54DF S ^~DQ!2&01
1

~Nmv!2
^~DP!2&0D t

1
1

2M
^D$Q,P%&0t21

1

3M2
^~DP!2&0t3G , ~56!

with ^D$Q,P%&[^$Q,P%&22^Q&^P&. The dispersions ap
pearing in Eq.~56! are computed for the pure initial state.

Back to the preferred basis problem, recall that Zur
considered the free Heisenberg equations for the oscill
operators (P,Q) and obtained the linear entrop
2D@^(DQ)2&01 1/(Nmv)2 ^(DP)2&0# (N51), averaged
over one oscillator period. So, this result corresponds onl
the coefficient for the linear time dependence in Eq.~56!,
where additional terms as square and cubic time-depen
behavior also take place. Such a behavior indicates tha
spite of the large number of particles, for large times t
momentum plays an important role in the problem of t
preferred observable because we have considered the
motion of anN-particle system instead of a single harmon
oscillator.

IX. SUMMARY AND CONCLUSIONS

In the GRWP model of continuous dynamical reducti
of the state vector it is assumed that each microscopic c
stituent of a system ofN particles is subject to a sudde
collapse due to a spontaneous random hitting process
sisting in a localization of the wave function of the partic
within an appropriate range@5#. In what turns to be a remark
able result the localization of a single constituent of the s
tem of particles is sufficient to localize the whole syste
Such a spontaneous localization, considered as a fundam
tal physical process, induces a steady increase of the m
energy value of the physical system and so the increas
temperature per unit time of the universe. When taking i
account that the age of the universe is about 1016 s, the
GRWP model leads to a total temperature increase from
beginning of the universe of 1023 K, a value claimed to be
comparable with the cosmic background radiation~CBR! of
3 K.

In the present model for continuous dynamical reducti
also based in a stochastic differential equation describin
Markovian evolution of state vectors, the random hitting p
cess in GRWP model is substituted by the intervention of
CBR. Such a strategy is intended to maintain~i! the principle
of conservation of energy, and~ii ! the claim that the universe
originated from the Big Bang leaving the CBR as a sign
ture. In ~i! the increase or decrease of the CM mean ene
of the system ofN particles is subject to a stochastic inte
action with the CBR, which acts as a reservoir. In~ii !, taking
the opposite direction to the GRWP argument~which claims
8-9
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de OLIVEIRA, ALMEIDA, MIZRAHI, AND MOUSSA PHYSICAL REVIEW A 62 012108
that the present temperature of the universe comes from
increase of the total energy arising from the random hitt
process!, we propose that the CBR temperature plays an
portant role in the reduction of theN-particle wave packet
So, we assumed, in agreement with the standard cosmo
that the Universe has originated from a hot state and coo
during its expansion, with decreasing mean photon ene
The Planck law for the thermal average boson numbe
CBR, indeed the best blackbody known, has recently b
tested by the COBE satellite@27#. The temperature of the
CBR, decreasing as the mean photon energy decreases d
the cosmic expansion, makes the mass of the system inc
ingly more important for the transition from quantum to cla
sical description. On this basis one can argue that the q
tum nature of the Universe becomes increasingly impor
as it is cooling. In fact, for the early Universe, the number
particles does not play a fundamental role in estimating
decoherence time, where higher temperatures~by itself! turn
the system from micro- to macrodynamics. However, as
universe becomes cooler the number of particles beco
increasingly important.

Moreover, the present model leads to realistic results
decoherence times. While in the GRWP model the va
1027 s obtained for a system of particles to go from micr
to macrodynamics seems to be too large, the value 10224 s
here obtained for a system ofN atoms in the low-frequency
regime is comparable to the decoherence time obtained f
the Caldeira-Leggett model.

As mentioned, whereas the GRWP model requires aprivi-
leged positional space, in the present model, by constructio
the stochastic operator acts on the CBR spectrum, carr
the same status for both the position and the momen
space. The GRWP’s result, the wave function collapse o
single particle induces the collapse of the wave function
the whole system, was obtained exactly from the choice
the position as a preferred basis. The same result foll
from our model without the choice of the position as a p
ferred basis. However, it has to be mentioned that in spit
attributing the same status for the position and the mom
tum space, when analyzing the entropy under the proces
decoherence, the position coordinate still emerges as a
ferred basis when considering a system with a large num
of particlesN. So, the preferred basis is directly related to t
number of particles in the system.

Another interesting feature is that we do not claim for
additional assumptionto decouple collective from interna
motion as the required large width parametera21/2

;1025 cm in the GRWP model. The random operat
Z(V) here assumed, besides being a more conventi
choice since it is associated to a reservoir~CBR!, leads to the
advantage of decoupling the CM and internal motion with
additional assumption beyond that usually assumed for a
ervoir.

The random operator describing the interaction betw
the system and the CBR carries only one parameter,
strengthL, instead of the two free parameters, as required
the GRWP model (a21/2 and the mean frequencyl). In our
model, the coupling of the CBR to the system, proportio
to L, corresponds to the random pseudopotentialdh @12# of
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the GRWP model. As well as the parameterl in GRWP
model, ourL is weak enough in the sense that it does n
affect the dynamics of a unique particle, even in the case
which its wave function is spatially spread@5#.

Finally, we point out that the Itoˆ equation is not derived
from a physical picture of the background and associa
scattering processes of the CBR by the system of partic
Instead of considering a particular interaction and choos
some specific particle property sensible to the electric
magnetic field of the CBR, we approached the problem
modeling the interaction by a stochastic coupling, such t
the dynamics could be described by an Itoˆ equation. We have
considered an effective strength parameterL accounting for
all kind of light-particle scattering processes. We also str
that our precursor~34! to the master equation~with respect to
the particles! still has information on both, the system o
particles and the CBR, since it contains operators of b
subsystems. This approach is different from the usual
where for getting a master equation it is necessary to tr
over the environment degrees of freedom, as is done in
theories of Joos and Zeh and Caldeira-Leggett or even
quantum optics. In our model it is possible to calculate c
relations between observables of both subsystems. Howe
we have to get rid of CBR degrees of freedom, Eq.~35!, just
because the available information on the CBR subsystem
sparse, consisting of the blackbody radiation distribut
function at 3 K. Thus the master equation~35! expressed in
the CM positional representation, Eq.~49!, incorporates the
similar equations obtained in both theories, Joos and Zeh
Caldeira-Leggett. The main difference between the three
proaches stem in the nature of the diffusion constant~DC!:
In Joos and Zeh the DC originates from the scattering
electromagnetic waves by small objects; in Caldeira-Legg
it comes from the fluctuations arising from energy dissip
tion of the system of interest to a thermal reservoir. In o
model the DC originates from the stochastic interaction
tweenN particles of massm and the CBR at temperatureT.
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APPENDIX: CALCULATION OF INTEGRAL I
Due to the normalized Lorentzian spectrum@Eq. ~28!#, the

integral accounting for the temperature of the CBR readI
5112*dVG(V)^n&V . Now, since the Planck’s distribu
tion ^n&V diverges whenV goes to zero, the same occurs
the remaining integral*dVG(V)^n&V . However, as usual
we assume that the spectrumG(V) has its maximum far
away from zero in order to cancel the divergence com
from ^n&V . In what follows we are going to estimate und
which conditions this approximation is valid.

After the transformationsVtc5x and g5\/kBTtc , the
remaining integral reads
8-10
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pE2`

1`

dx
1

@x2~vt1 i !#@x2~vtc2 i !#

1

egx21
, ~A1!

which can be solved in the complex space through Jord
lemma, leading to the result

2i H 1

2i

1

eg(vtc1 i )21
1

1

g (
n50

` S 12
1

2
dn,0D

3
1

Fvt1 i S 12
2pn

g D GFvtc2 i S 11
2pn

g D GJ .

~A2!

It can be shown that the imaginary term coming from t
above result is zero. Now, denotingg5p/j, where the pa-
rameterp is equal to\v/kBT whereasj5vtc , the real term
coming from~A2!, reads

cos~j/p!ej21

ej@ej22cos~j/p!#11

28p
p3

j2 (
n51

`
n

@11p22~2pnp/j!2#1~4pnp2/j!2
.

~A3!

For largen the second term of~A3! reduces to
-

d
y

n

01210
’s

;
j2

p (
n51

`
1

n3
. ~A4!

The analysis of the above result will be restricted to t
condition j/p!1, with j&1, under which the sum in~A4!
can be disregarded~since evenj2/p!1), and the first term
in ~A3! gives us 1/(e\v/kBT21), in a way that the Lorentzian
distribution G(V) acts practically as ad function @d(V
2v)#. In fact, the limit j&1, leads to the conditionv
&tc

21 , so that the frequency can be taken far away fro
zero since, as discussed above, we are considering an
tremely short correlation time~Markovian approximation!.
Under such a condition it is expected that the Lorentz
functionG acts indeed as ad function, which means that the
action of the reservoir over the system of particles is
stricted to the oscillators whose frequencies are closely
lated tov. So, the problem of how farv has to be from zero,
in order to eliminate the divergence coming from Planc
distribution whenv→0, depends exactly on the Lorentzia
height in its maximum. Moreover, the conditionj/p!1,
with j&1, holds for both the low- and high-frequency r
gimes. Whenj;1 ~so that v;tc

21), we get the high-
frequency regime\v@kBT, whereas forj!1 even the low-
frequency regime is allowed. For the latter case we have
assure that 0!v!tc

21 , not only to get rid of the divergence
arising from^n&v , but also to hold the assumption of high
excited oscillations of the CBR leading to the Markovia
approximation. Summarizing, under the conditions est
lished above we get the resultI;112^n&v , which holds for
the high- and low-frequency regime.
o
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