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Quantum to classical transition from the cosmic background radiation
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We have revisited the Ghirardi-Rimini-Weber-Ped&RWP approach for continuous dynamical evolution
of the state vector for a macroscopic object. Our main concern is to recover the decoupling of the state vector
dynamics for the center-of-magSM) and internal motion, as in the GRWP model, but within the framework
of the standard cosmology. In this connection we have taken the opposite direction of the GRWP argument that
the cosmic background radiatidi€BR) has originated from a fundamental stochastic hitting process. We
assume the CBR to be a clue of the Big Bang, playing a main role in the decoupling of the state vector
dynamics of the CM and internal motion. In our model, instead of describing a continuous spontaneous
localization(CSL) of a system of massive particles as proposed by Ghirardi, Pearle, and R#hyjs. Rev. A
42, 78 (1990] the Ito stochastic equation accounts for the intervention of the CBR on the system of particles.
Essentially, this approach leads to a precursor of the master equation for both the CBR and particle degrees of
freedom. The violation of the principle of energy conservation characteristic of the CSL model is avoided as
well as the additional assumption on the size of the GRWP’s localization width necessary to reach the
decoupling between the collective and internal motions. Moreover, realistic estimation for the decoherence
time, exhibiting an interesting dependence on the CBR temperature, is obtained. From the formula for the
decoherence time it is possible to analyze the transition from micro- to macrodynamics in both the early hot
universe and the nowadays cold one. The entropy of the system under decoherence is analyzed and the
emergent “pointer basis” is discussed. In spite of not having imposed a privileged basis, in our model the
position still emerges as the preferred observable as in the CSL model.

PACS numbd(s): 03.65.Bz, 05.40-a

I. INTRODUCTION tion for physical ensemble, was reported by Gigih Next,
Pearle[4] described the QMSL model through an kto-

In the last decade several proposals to modify the stanchastic differential equation. Basically, Pearle replaced the
dard Hamiltonian dynamics, ranging from master equation§oisson process of instantaneous hits in the GRW model by
to stochastic quantum mechanics, have been advanced to tiyMarkov process described as a stochastic modification of
to set up a unified description for microscopic and macrothe Schrdinger equation, so that a continuous evolution of
scopic physical phenomena. In the pioneer work by Ghirardithe state vector was accomplished. By considering a specific
Rimini, and Webef1], quantum mechanics with spontane- choice of the operators defining the Markov procéss-
ous localization(QMSL), the state vector collapse, leading pressed in terms of creation and annihilation operators
from quantum to classical dynamics results from the instanGhirardi, Pearle, and Rimir{6] have described the mecha-
taneous action of a spontaneous random hitting proces8ism known ascontinuous spontaneous localizati¢@SL)
Such a Poisson process is described by a “localization” opof systems of identical particlgghe QMSL model has con-
erator, a Gaussian function acting on each microscopic corsistency only in the case of systems of distinguishable par-
stituent of any system. The localization operator carries twdicles).
free parameters; a mean frequencgnd a localization width Other investigations dealing with dynamical reduction
a Y2 understood as new constants of natithe spontane- models have recently been considef6fl among them it is
ous localizationis argued to be a fundamental physical pro-worth mentioning the model fointrinsic decoherence pro-
cess. Through these basic assumptions the QMSL consistBosed by Milburn(7]. While in the Ghirardi-Rimini-Weber-
in an explicit model allowing a unified description for micro- Pearle(GRWP model the addition of stochastic terms in the
scopic and macroscopic systems. It forbids the occurrence éichralinger evolution automatically destroys the quantum
linear superposition of states localized in far away spatiafoherence of the physical properties of the system that attain
regions and induces a dynamics that agree with the predi@ macroscopic level, the modification of the Liouville equa-
tions of classical mechanics. tion proposed by Milburn destroys the coherence even at

Pursuing the program of the QMSL model, Dif8] pre- ~ microscopic level. A
sented an interesting connection between the original Inthe CSL model the ltstochastic equation for the evo-
Ghirardi-Rimini-Weber(GRW) hitting process and a modi- lution of the state vector reads
fied Schralinger equation. Another significant achievement

concerning a dynamical reduction model, a stochastic equa dlyy=| - ngterh— E—(dh)z ), 1)

*Electronic address: miled@power.ufscar.br wheredh is a linear self-adjoint operator, whose random
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fluctuation may increase or decrease the norm of the stathe present CBR is a clue that the universe began its expan-
vector. Using the [toformula (with the notation |d) sion from a Big Bang10]. This assumption is introduced
=d|y)), with the purpose to avoid the unconventional increase of the
- total mean energy of the universe. Formally, we hypothesize
dll 2= (gldy) +(depl )+ (dyldep), (2)  that the state vector, the Hamiltoniah and operatorg, "
in Eq. (4) represent both the system of particle and CBR
radiation; the set of random functiofB;} describes the in-
tervention of the CBR on the system and substitutes the
t§)|50ntaneous localization process. Instead of elaborating on
the formal microscopic problem of the interaction of a sys-
i 1 tem with a reservoif9], we assumad hocthat the evolution
d¢)=| - ngt+dh¢— E(dhd))2 | ). (3)  of the system of particles, under the influence of the CBR, is
described by an Itequation having stochastic coupling pa-

Now, it is necessary to distinguish betweam [Eq. (1)] and rameters. . . .

physical[Eqg. (3)] ensembles of state vectors to correctly un-_. Therefore, in the presembnservativecontinuous r(_aduc-
derstand the effect of the non-Hamiltonian terms. To this en&mn model (the total energy C.)f system plus CBR is con-
a precept is adopted, namely, that the square norm of eacﬁ?r\t/ed ’we argue that(l_) tf;fltl)nﬁrzatsetk?r gecriﬁse of.the
(unnormalized state vector represents the weight associate@yS elm S mean energ.y.;s a dn l.Jﬁ o the 312 € posr-
with that (normalized state vector in the ensemble coming lonal space Is not privileged with respect to the mo_mentum.
from the Ifostochastic equatiofs,5]. This precept is a gen- space, as required when the localization operator is involved;

eralization of the GRW assumption that the frequency of hit ﬁ)evxﬁlﬁa%t?\?é (;ﬁmr:grﬁ:d:]gﬁgsl g:;]uerrpttlﬁéovgizﬁr? up;l;aa m-
is proportional to the squared norm of the state vector. ’ Ys P

-1/2__10-5 ; ;
Therefore, in the GRW prescription the quantum theory pre—etera 107 cm in the CSL model{4) as mentioned

diction about the associated probabilities in a measuremer?tbove’ more admissible results are obtained for decoherence

process is recovered. By considering such a precept for thtgnes, while in the CSL model the value 10 s obtained for

physical ensemble, the linearity of thaw equation and the 3 system of partltilesb totuntldergo fror|r|1 qu?;:tulm tol_ cl?sswal
Markov nature of the [tostochastic process leads to the ynamics seems to be too larges well as the localization

; -12_10-5 idar
physical stochastic differential equation for the-particle W'dth @ 10 ~com also seems too large when consider
state vector ing typical atomic distances of about 10 cm, or even su-

perposition of the center-of-mass coordinate different by
i 1 more than about~*?[11]). Finally, (5) instead of the two
d¥y)=|— 7 Hdt+Z-dB— EYZT-Zdt |¥n),  (4)  free parameters required in the GRWP model {? and the
mean frequency), the random function describing the in-

tem and the set of random operat8es {B;} is characterized single strength parameter with dimension of inverse of time.
through a real Wiener process, satisfying the f0||owing|n fact, the coupling constant of the CBR photons to the

it is easy to see that E@l) does not conserve the norm of
| ). Thus, the introduction of a norm conserving nonlinear.
process is mandatory. This process, whose random operal
depends on the state vector, reads

means and correlations over the ensemble N-particle system, as the strength parameter in the GRWP
model, defines the inverse of a characteristic time, which is
d_Bi=0, dB;dB;= y;dt. (5) associated to the net effect of the random pseudo-

“potential” dh [12]. Also, as in the GRWP model, our
The statistical operatopy=|Wy\){Wy| of the physicalen-  strength parameter is small such that nothing changes in the
semble and its evolution equation are directly obtained frontHamiltonian dynamics of a single particle even in the case in
Eq. (4); using the Ifocalculus in evaluatinglpy /dt one gets ~ Which it has an extended wave functips).
Finally, we mention that Joos and Zgb3], have previ-
dpn [ b4 ously argued that scattering of photons even at a relatively
W:_%[H'pN]Jr?’ZPN'ZT_E{ZT'Z”’N}’ ©®  jow temperature can induce the localization of the wave
packet of a macroscopic system. So, their treatment, based
which is exactly the Lindbla@8] form for the generator of a on a master equation proposed by Wigftet], suggests that
guantum dynamical semigroup. the intergalactic cold CBR cannot simply be negledtes.

In the present work our main concern is to achighe  The model here presented goes exactly on this point, i.e., we
decoupling between the state vector dynamics of the centeconsider the process of random scattering of the CBR pho-
of-mass (CM) and internal motion of a system of particles  tons by a system of particles as responsible for the superse-
the GRWP model thislecouplingresults from a hypothesis lection rules and the micro- to macrotransition of its dynami-
of spontaneous localization of the system’s wave functiorcal description. In this way, despite inducing the
due to a fundamental stochastic hitting process on the pasuperselection rules the CBR also induces the mechanism of
ticles, which induces amcrease of total mean energy of the separating the center-of-mag&SM) coordinate from the in-
Universeclaimed to be the origin of the cosmic backgroundternal motion. Besides, we present a brief cosmological
radiation (CBR). Contrary to this argument, in the present analysis of our results, discussing the roles played by both
work we assume the point of view of standard cosmologythe CBR temperature and the number of particles of the sys-
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tem, in its way from quantum to classical dynamics, as thdocally averaged density operator defined by &g, one gets

universe evolved from a hot to a cold state. the physical stochastic nonlinear differential equation for the
In Sec. Il we briefly review the GRWP model presenting state vector as

its main achievements. In Sec. Ill we construct our model:

beginning from an [tostochastic equation we derive a pre-

master equation for a system bf particles and the CBR.

d|lﬂN>:[_int+f d3xN(x)dB(x)
Tracing over the CBR degrees of freedom we obtain a master

equation for the system of particles only and in Sec. IV we 1

show that structurally it shows exactly the Lindblad form. In B EgJ’ AN dt i), (10
Sec. V we estimate the coupling parameter and in Sec. VI we

estimate the decoherence time for the system of particles. Where the Wiener proce$(x) satisfies

Sec. VII we show that at low temperature limit our master

equation and the GRWP lquation are equivalent, thus this dB(x)=0, (119
last one is a particular situation of the former; these equa-

tions allow the decoupling of the state vector dynamics into W: £83(x—y)dt. (11b)

two separate equations, one for the CM and the other for the

internal motion. In Sec. VIII we calculate the ent(opy_ andgrom Eq.(10) the evolution equation of thii-particle sta-
analyze the problem of selection of a preferred basis. Finallysstical operator obtained from Itcalculus reads

in Sec. IX we present a summary and conclusions.

apn 3
Il. GHIRARDI-RIMINI-WEBER-PEARLE MODEL St - [Hpn]t 4 d*xN(x)pnN(X)

As explained in the Introduction, in the CSL model the 1 -
random operatodh contains in its definition the length pa- - EZ{J d°xN (X),PN] (12
rametere~ Y2 and a strength parametérwhich is related to

the mean hitting frequency. In this section we present @ gnq it can be checked that taking= {(a/4m)%? Eq. (12)

brief review of the CSL model as a class of Markov pro-rgqyces to the correspondent equation for a single particle
cesses in Hilbert spad®]. We will consider a system dl . hsidered in the QMSL model.

identical particles so that the localization operator must in- 14 giscuss the physical implications of the modified dy-
volve globally the whole set of particles in order to preserve,smical equatiori10), the separation of the CM motion will

the symmetry properties of the wave functidr6]. For this &)e made. IfQ is the CM coordinate of the system agidits

purpose let us consider the creation and annihilation fiel . !
+ . o internal coordinate@measured from the CM of the particjes
operatorsa’(q,S), a(q,s) of a particle at the poing in some one can define the particle coordinates as

reference frame with spin componest satisfying the ca-
nonical commutation or anticommutation relations. From ~
these operators a locally averaged number density operator is qi=Q+ai({ri}), (13

defined as . )
where{r;} represents a set of\8-3 independent variables.

o |32 1 In the GRWP model the sdt;} does not contain macro-
N(x)= 2—) > | dq exp{ - Ea(q—x)2 scopic variables. As a consequence, assuming that the
m s Hamiltonian can be written d8=Hq+ H, ., we consider the
xa'(qg,s)a(q,s). (7)  wave function
The operatoN(X) is self-adjoint and its commutator for dif- #(9,5) =¥ (Q)x(r;,s), (143
ferent values ofx vanishes. The total number operator is A
defined adN= [d3xN(x), and the symmetrizetantisymme- _ =( ) _
trized) states containing particles at the indicated positions, X(Ti,8) B A(r;,s), (14D
la,s)=Na'(q;,s1)- - -a’(an,Sn)|0), (8)  where the symbol@) specifies the symmetrization or anti-

symmetrization of the internal coordinate wave function. Un-

constitutes the normalized common eigenvectors related tder the assumption that the length parametef’ is such

the eigenvalue equatioN(x)|q,s)=n,|q,s), with that the internal wave functiod (r;,s) is sharply peaked
around the value;, of r (with respect toa /%), the action

32 N of the operatoN(x) on the wave functioril4g turns out to

> ex;{—%a(x—qi)z}. (99 be

i=1

a
"\ 27

Applying [5,16] the stochastic process established by Eq.
(4) to a system of identical particles and considering thewith

NO)W(Q)x(ri,s)=F(Q—x)¥(Q)x(ri,s), (19
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3/2 1 _
ex;{ —5a(Qty- x)?
(16) (22)

Therefore, the operatdd(x) acts only on¥ and the sepa- whereD(y) is the number of partii:les per unit volume in the
rately normalized wave function¥ and y satisfy the equa- neighborhood of the poing=Q+y. The evaluation of the

3/2 1 - ~
FQ-0=3 (%) exp{—ia[mqi(ro)—x]z . F(Q—X)=jd337D(y)<%

tions factor 6, for the case of a homogeneous macroscopic box
containing theN particles through the Eq22) gives the
. result[5]
d\If={—|Hth+f d®xF(Q—x)dB(x)
8=(almVD3S;, (23
- %gf d3xF2(Q—x)dt| W, (178  whereS; is the transversal section of the macroscopic box.

From Eq.(20b) it is evident that the momentum variance

) implies that the CM energy increases per unit time as
d)(=—|Hri)(dt. (17b

AE _ (54 - 32 ~1 —2

By assuming a large enough length parameter and an in- <+ = m ~0(gems S cm 7 (24)
ternal wave function, which is independent of the macro-
scopic variables, the internal motion decouples as in the alwith the GRWP choicex™*?~10"% cm together withD,,
sence of the stochastic terms in E§j0). From this fact, the ~10** cm 3. From the requirement that the macroscopic
reduction rates, which are characteristic of the GRWP theorjrequency associated to the system of identical particles Eq.
together with the position and momentum spreading, can bélL8) is exactly the same as for distinguishable particles Eq.
obtained. In particular, in the positional representation of Eq(19), GRWP have chosefi~10 %0 cm® s 1.
(12), it is possible to verify with the help of the macroscopic
density approximation and the sharp scanning approximation Il. DECOHERENCE FROM THE COSMIC
[5], that the macroscopic frequency associated to the system BACKGROUND RADIATION
of identical particles is

Our approach uses the stochastic dynamical equéipn
I'={DgNoyt- (18 where we identify the continuous componéimt frequency
space of the operator responsible for the interaction of the
Here a homogeneous macroscopic body of derBigywas N-particle system to the CBR as
considered and,; is the number of particles of the body at
position Q' that do not lie in the volume occupied by the
body at positionQ”. In the case of distinguishable particles,

N
Z(Q)=2 [AQ)a+AT(D)al, a=(axy axy a.)-
k=1

one gets the direct result (25
Aew=nNA\, (19 where

n being the total number of particles, so that for a typical 1 i 26

macroscopic numben~ 10, one obtains\qcy~10 s, as &= ’—Zﬁmw(quk 1), (26

mentioned above.
The position and momentum spreading obtained from thg,q al is its Hermitian conjugate[ @y ,al, 1= 6k 8,

approximations leading to Eq418), are written as =x,y,2), q, andp, are, respectively, position and momen-

tum operators of th&th particle of massn. Zw is a charac-

h? teristic energy of i i
X N2 _ 3 gy of the system of particles associated to the
(QP)=(QM)st 20, 6M2t ’ (209 quantum fluctuation of the CM. The operat@x§(Q),A()
stand for the creation and annihilation of a quantum of en-
1 ergy #Q) from the environment. The coupling parameter is
<pi2>=<pi2>s+ =6h%, (20b) defined by the continuous stochastic Wiener prod&d3)
2 satisfying
where the suffixs indicates the Schabinger evolution, and dB(Q)=0, (279
IF(y)\? dB.(0)dB.(Q) = - SQ—Q
5i:f d3y y _ (21) dBi(Q)dB;(Q")=y(Q)6 ;6(Q2—-Q")dt,  (27b
Yi

with y(Q)=AT'(Q) accounting for a strength parameter
Now, using the macroscopic density approximation ap-and a frequency distribution functidi((2). Note thatl ()
plied to the identical particles system, E6) is modified to  refers to the effective frequency distribution of the CBR pho-
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tons, which interact with the system of particles at energywhere the operataX accounting for the macroscopic object
aroundzw. We next consider the system of particles andreads
CBR interacting almost resonantly with Lorentzian spectrum

X= ! (NmMwQ+iP), (32
(28) 2hmo

Tc

TZ(Q—w)Z-i-l.

c

1
F(Q)=;

while X is its Hermitian conjugate. These operators satisfy

In view of Eq.(28) it follows from the Fourier transform of he commutation relatiofiX; ,xJT]:Nb‘i ji _ As mentioned

Eq. (27b) that earlier the coupling constant of the interaction between the
A CBR and the system of particles defines a characteristic time

dBi(t)dBj(t’)zZ—e‘“’(t*t’)e*("")’%dt, (29) A~1, which is associated to the net effect of the random

™ “pseudopotential” described by the last two terms on the

right-hand side of Eq(31).

As the stochastic operator in E@1) automatically acts

ly on the joint wave vector of the CM degree of freedom

and the CBR|V¢py ., car), the separately normalized state

vectors Ve cer) and|éy.y), the latter for the internal

where the correlation time, defines the memory time over
which the stochastic function changes appreciably. From Eat')n
(29 we conclude that when considering extremely short,
i.e., much less than all other times of interéstolution of
the particle systein so that in a good approximation ! )
dB(0dB (1) Bi(1)dB;(t))~ 8(t—t')dt, the system is Markovian. degrees of freedom, satisfy the equations
Through Egs(27a and(27b) the physical stochastic differ-

ential equatior(4) reads dlV e car) = —;L—Hcmwsred”f dO[AQ)X!
. N
[
d|\PN+CBR>: _%HN+CBRdt+f koZl [A(Q)ait +AT(Q)X]-dB(Q)—%J dQr Q)
+AT(Q) ]~dB(Q)—£f dOT(Q)
% 2 X[AQ)XT+AT(Q)X]?dt|[W e car),
N 2
X ;1 (A(Q)aﬂ:+AT(Q)ak)} dt] (333
B d| ¢y ) =—iH {,v}| ¢y dt. (33b
X[Wyycer)- (30) '

It should be noted that the above E¢339 and (33b), dif-
ferent from those in the CSL modHEqgs. (179 and (17b)],
N . C o involve also the CBR degrees of freedom. As will be shown
ently from the stochastic differential equation in the CSLIater, the present approach in the low-temperature limit al-

tmhg(::‘?é.eT:Veolﬂgtl;?:lt(;)]‘nglsNJrs%:r?] Igfth;ti?g:g%% %eBSg't\);hS"elows us to obtain separately the normalized wave functions
y P ’ for the system of particledWcy) and [¢yy), satisfying

the two remaining terms account for the stochastic interac- ) o _
tion between the CBR and the particles. equations similar to those in _the CSL. Next, from Egs.
By defining both, the Wiener proceds and the operator (6) _and (31) the statistical —operator py;cer

Z depending on the CBR frequency space, the positionat | ¥n+cer(¥n+cerl reads
space will not be anymore privileged with respect to the d .
momentum space, as occurs in the CSL model. We now pN+CBR:_'_

. . o [Hn+cer PN+cBRI
proceed to the separation of the CM motion of the modified dt h
dynamical equation(30). The substitution of the operators

It must be emphasized that E@®O) describes the evolution
of the state vector of system &f particles and CBR differ-

al,ak as position and momentum operat@s g, permits _ éJ' dOT (Q)[H{[AQ)XT
us to express EQq(30) in terms of the CM coordinates 2
Q=(1I/N)Zqx andP=Zpy as +AT(Q)X1% pnscar — 2[A(Q)XT

i T Tt

AWy, car)= _%HMBRdHf dO[AQ)XT +AT(Q)X]- pn+ced AQ)XT+AT(Q)X]],
(34)
A
+AT(Q)X]-dB(Q)— Ef dQrQ) which is a precursor to the master equation in that it contains

operators from both th&l-particles system and the CBR,
allowing to calculate correlations between operators of a sys-
X[A(Q)XT+AT(Q)X]Zdt] |\ cBR)- tem of particles and CBR. However, since we only have at
our disposal the statistical properties of the CBR field, the
(31 obvious procedure is to trace over the CBR degrees of free-
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dom, considered thermalized at temperaflijavhich leads — =(Q),+(P),_o/Mt. For V=Q? Q-P+P-Q andP? succes-
to the reduced density operator of the system of particlegively, the equations of motion for the mean values become,
only, containing the average number of photons of the CBRespectively,
as a parameter.

Back to Egs.(29), when the following assumptions are d(Q?) )
met (i) a short correlation time, (<A 1), leading to the dt M<Q' P+P-Q)~NA(QY)
Markovian approximation; )i the interaction between the
system of particles and CBR sufficiently smédixactly the
purpose at handthe density operator of the global system
can be written fS?N+CBR(t)=pN(t)®prBR(tl)+pﬁrﬁ.(g, ) |
where the correlation termgq,¢ can be neglectefl?7]. By Q-P+P-Q) 2
considering the thermalized CBR density operapegg & M<P2>—NA<Q' P+P-Q), (38b

= ext] — BHced A AV Triexd — AHesr ATAT,  with

3hA
+mf dQr(Q)(1+2({n)q), (3839

=kgT, kg being the Boltzmann’s constant afddthe CBR d(P?) 3N2A M o
temperature, we find the master equation for fhparticle T —NA(P?)+ TJ’ dQT(Q)(1+2(n)q),
system (380
dpn [ A which differ from the pure Schoinger evolution since\
— = C[Hy,onl = 5 | AT @)X Xpy] P g
dt f 2 #0.
T T R
+pnX" XT+ (o ([XT-,[X,pn]] IV. MASTER EQUATION AND ITO DYNAMICS
s
XX pn] DT (35 It will be useful to be reminded of the conventional treat-

ment of the problem of interaction of dd-particle system
where py is thereduced density operataf the N-particle  with the reservoir R). Under the HamiltonianH=Hy
system andn) o= 1[exp(Bh)—1] is the thermal averaged +H,+V, V being the interaction between both systems, the
photon number. reduced density operator of thé-particle system,py(t)
As time goes on, it is expected that the stochastic cou=Tr_[p,(t)], evolves, up to the second order in the interac-

pllng induces thGN-particle SyStem to a thermal equilibrium tion, according to the genera”zed master equaﬁm
with the CBR. By evaluating the rate of energy change be-

tween the system and the CBR we shall estimate the strength dpy(t) i
parameter and improve our understanding about the nature  —g;— — ~ 7 LHn An(D)]
of this stochastic coupling. In order to estimate the energy
mean-value let us consider the mean value of a generic dy- 1 t , .
namical variable) whose equation of motion is obtained __2Ter [V,e” oIV, py () prlldt,
through Eq.(35) as h 0
(39
d(V) i A N . N
TR %Tr([V,HN]pN)— Ef d()HTQ)Tr{[[V,X"]- X whereLO(.-)E[HNvL Hg,-]isthe L|ouy|II|an operator of the
free Hamiltonian. The second term in E®9), acting as a

+ XTI X V] + (Mo ([[V,XT]-.X] source of noise for the system and also as a @nlsource
of energy, is responsible for the irreversibility of the process
+[[V.XT-. XD 1wt (36)  and the loss of coherence R (t). As such, the ftacalculus

is justified when the stochastic terms are introduced into the
By applying Eq.(36) to the position and momentum vari- Schralinger equation. So, the CBR is responsible for the
ables consecutively, we observe that not only the pure Schroariation of the mean energy of the system and the increase
dinger evolution is modified but also the results from theof entropy. As shown by Isaet al. [19], choosing conve-
CSL model, such that the equations of motion become niently the interaction terrv it is possible to obtain Eq35)
(the Lindblad form from Eq. (39).

d(Q) 1 1 It is worth noting that the master equati4d5) can be
T —(P)— =NA(Q), (378  written as
t M 2
don(t) i 2
ap) 1 PN o [Hyws0]+ S, Sedon(V), @40
T: - ENA<P>. (37b) n=1

where the superoperatof ¢, ] is defined as
These equations lead to the resul®),=exp(—3NAt)}{P) L
and{Q);=exp(—3NAt){(Q)s, where the subscrigtindicates P ot
the pure Schidinger evolution: (P);=(P);_o and (Q)¢ SLenlpn=Cn-prCn= 5{Cn: Cn.pnt, @D
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with ¢;=[AfdQI'(Q)(n)o]YXT andc,=[AfdQI'(Q)(1  whole system; as a consequence, the CM energy increases

+(n)o)1¥2X. Written as in Eq.(40) our master equation linearly with the “interaction” parameteNAt. However,

resembles the Lindblad form for the decay of a mode of thdrom Eq. (44) we conclude that the stochastic coupling ac-

eletromagnetic field inside a cavifg0]. counts for a CM energy, which grows or decays exponen-
In summary, we have assumad hocthat the evolution tially with NAt, depending on the negative or positive value

of the system of particles in its way from quantum to classi-for (K)s—Keq, respectively.

cal dynamics, under the influence of the CBR, is described In order to estimate the strength parameterfrom Eq.

by an Ifostochastic equation. However, here we showed that44) we assume that the relaxation time follows from the

the usual master equation formalism can be viewed as a sukelation (K)s—Kege™ NAR~ Keg, SO that
dynamics of the ltadynamics, without any need to use per-
turbation methods as is done in the conventional derivation. 1 (K)s—Keq
A~ —In| ———— (45)
NTR Keq

V. STRENGTH PARAMETER

For a system oN~ 107 particles initially at room tempera-
ture the equipartition energy theorem gives a mean kinetic
t NAt energy(K)s~10° erg. The integrall accounting for the ef-
—( — —) —NAt fect of the temperature of the CBR has been estimated in the
NA 2 Appendix for Br.<#, with wr.<1. The resultZ~1
+2(n),, holds for both low- and high-frequency regimes.
(429 So, we find for the equilibrium energy at the low-frequency
' regime (o<kgT, so that (n),~ksT/hw), Keq~kgT
~10 16 erg. At the high-frequency regimé: (>kgT), the
{Q,PHy=({Q,P}) e N\ equilibrium energy obeyX..>kgT. (We are referring to
low- and high-frequency regimes since the present CBR tem-
perature, T~3 K, is assumed Taking K¢, at the low-
frequency regimdin fact, due to the In function, choosing
(42h) Keqin low or high frequency will not change appreciably the
value of A), and the relaxation timeg of the order of the
3INmMh At age of the universe, about 0s (what seems to be reason-
—— (1-e ™), (429  able when considering, as obtained below, such a small cou-
pling of the system to the CBRwe get

Back to the equations of motio38), their solutions are

(@3)=(@) - T

. 1
N2A2  2@?

(1_ e*NA’[)

1
—37ho|te” NAM— m(l—eiNAt)

(P)= (P NN+

where A~10"3%8 571, (46)
1 1
(Q@%)s=(Q%)o+ w | {QPHot+ M<Pz>ot2 » (433 4 value to be compared with the above-mentioned coupling
in the CSL modet~103° cm®s 1. Thus, the parametet
2 is of the order of the upper limit of the excitation rate for
({Q.PhHs=({Q.P})o+ M<P2>ot, (430 nucleons estimated by Pearle and Squjgs, by compari-
son with a neutrino-induced process. As already pointed out,
(P2)=(P?),. (430 such a value hardly affects the dynamics of a microscopic
s particle.
The effect of the CBR temperature is present in the integral
I=[dOTI'(Q)(1+2({n)q). It is worth noting that the time VI. WAVE-PACKET REDUCTION RATES

evolution of the operators in Eq$42) does not show the ] » )
additive property with respect to the ScHiager terms as Bgck to Eq.(35), in the CM positional representation, the
obtained in the CSL model. As a consequence, @qg  density matrixpy(Q,Q’) evolves according to the differen-
differs from the corresponding one in the CSL model, Eg.lial equation

(20b), because instead of the diffusion inducing a steady in-

crease of the mean value of the kinetic energy, the present dpn(Q,Q",t) ho| 3 9 o
model exhibits, asymptotically, thermalization due to the at | 2iMl 202 02 —Dl(Q-Q)
aQ° 9Q
CBR,
. 2 (o o\’
(K)=((K)s—Kegle "'+ Keq, (44 — | ==+ —
(Mw)?|9Q  4Q’
where the equilibrium kinetic energy reals, = 3Z# w/4.
So, w is a characteristic frequency proportional to the ther- NA d , 9 1
malized mean kinetic energy of the CM. ) Q- (9_Q,+Q Q|
As mentioned above, in the CSL model the localization of
a single particle of the system is sufficient to localize the Xpn(Q,Q',1). (47
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The first term on the right-hand side comes from the comper bar[24,27, AQ~10 ° m, at cryogenic temperatures,
mutator in Eq.(35), the terms multiplied by the diffusion T~10"2 K, we also observe the persistence of quantum co-
constantD=NMA w(1+2(n),)/4h (as well as the remain- herence from Eq(49), as should be expected.

ing terms, which are independent of temperataceount for Back to Eq.(48), when interpreting the exponential damp-
the fluctuationgor ra_ndom kl_ck$and fort.he energy changes ing factor ¢ by the light of the CSL mode]lEgs. (18) and
due to the stochastic coupling, respectively. (19)], we conclude that the strength plays the role of a

To analyze the wave-packet reduction rates we will notmicroscopic frequency hitting parameter.
consider Eq.(47) in detail, since the effect of the second
term on quantum superposition will be of much greater in-

. . . . . VIl. CM AND INTERNAL MOTION
terest[22]. For a brief estimation of the off-diagonal matrix

elements Eq(47) will decay exponentially as By construction we assumed that the CBR acts only on
the CM coordinates of the system of particles. Such an as-
(Qlps(H)|Q")=e"(Qlps(0)|Q"), (48)  sumption automatically decouples the dynamics of the col-

lective and internal motions in the master equati@s).
where {=D(AQ)? and (AQ)?=(Q—Q")2. It follows from  Next, we show that even the vector state dynamics for the
Eq. (48) that the quantum coherence of a macroscopic syseM and the internal motion decouple, as in the CSL model.

tem will disappear on a decoherence time scale Of course, our analysis will be restricted to the low-
temperature limit where, as obtained in E49), the macro-
1 1 h 49 scopic character of the system becomes really important due
T = . i i imi i ifi
D D(AQ)? (1+2(ny,) NMA w(AQ)2 :g the number of particleN. In this limit Eq. (35) simplifies
Analyzing Eq.(49) in terms of the CBR temperature, it is dpn i A
interesting to note that in the low-temperature lintihe Wz—g[HN,pN]+AX-pNXT—E{XT-X,pN}.

present universeT~3 K), i.e., (n),—0, the number of
particlesN plays a crucial role in the decoherence process

induced by the CBR. In the high-temperature limit, i.e., The siochastic differential equation for the state vector of the

(n),—<° (the early universe in the present madele con-  gystem of particles, which leads to E§1), can be written as
clude that Eq(49) leads from quantum to classical physics

even in a system composed by a small number of particles. i A

This is a key result, which helps support the assumptions  d|¥y)= —%HNdHX-dW—EWT-Wdt W),

considered in the present model. (52)
Let us now estimate the decoherence time for both a mac-

roscopic and a microscopic object in the present universg,q with the Wiener proces:t_V\/i=0 W=A5i-dt.
ie., T~3 K. In'order to compare our results with that pre- 11 assumption made in the CSL model, tJhat thé{aét
sented in the literature, we consider the low-frequency re;, Eq. (13 does not contain macroscopic variables, implies
gime, such that Eq49) reduces to that the state vector for the macroscopic object factorizes as
) \PN({qk})=¢CM(.Q) <_ﬁim({fi})- The additiqnal assumption
_ 1 h (50) that the CM motion is decoupled from the internal degrees of
D(AQ)? " INAM ksT(AQ)2’ freedom means that the Hamiltonian must be written as a
sum of two terms,Hy=Hcu+Hine [5]. Under these
By considering a system of (~ 1079 hydrogen atoms with assumptions  the lto calculus, dW¥y=d(ycybin)
massM~1 g and separatioAQ~1 cm, quantum coher- =(d¥cm) bintt dem(dding +(diem) (déin), shows that
ence would be destroyed i, ~10 2* s. Such a value turns the wave functionsjic\(Q) and ¢in(ri), similar to Egs.
to be significantly smaller than the one obtained by GRWP(173 and(17b), satisfy equations
Aew~10"7 s, Eq.(19), and comparable with that obtained

(51

D

through the linear response model of Caldeira and Leggett _|_ '_ X dW— ﬁ T
(CL) [23], where, also at the low-frequency regimeg,/ 75 d[¥cM) j HomdUHX-dW =7 W wdt [Wem).
~h22mksT(AQ)?, 7r being a relaxation time. For the (539

above-mentioned system dfl atoms, and assumingg
~10'® s, as we have done to obtain Eq.(45), we get from ]
CL model 1p~10 2% s. So, Eq(49), and consequently Eq. dliny)= - %Himwi“‘)dt'
(50), arise from a theory that, despite assuring the essential
character of the GRWP model, gives a more realistic valud he stochastic terms do not affect the internal structure of the
for the decoherence time of a macroscopic object. system of particles, i.e., nothing changes in the Sdimger

As far as a microscopic object is concerned, for exampledynamics of microscopic particles. It is worth noting that in
a single atomm~10 2% g on atomic scaldQ~10"8 cm, the CSL model the additional assumption of a large enough
we observe the persistence of quantum coherence since localization width parametegbesides an internal wave func-
~10" s. Finally, we note that when considering a tiny We-tion independent of macroscopic variablés necessary to

(53b
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decouple the dynamics @fcy from ¢, . In fact, as shown persion in momentum is considerably smaller when com-
in Ref.[11], a width parameter of order of atomic size leadspared with that in position which, in this situation, emerges
to the breakdown of the translational symmetry of the systenas the preferred observable.

and the interaction between the CM and the relative coordi- In the weak-coupling limit we integrate E5) replacing
nates(i.e.,H=Hcy+H;:+ V), has to be taken into account. the general evolution in Eq35) by the free von Neumann
However, in the present model, since we have assumed thatjuation to obtain

the CBR acts only on the CM coordinates of the system of

particles, no additional conjectures were requested about the B 2 1 2

random operatoZ({}), Eq. (25), to achieve the remarkable S=4D| | ((AQ)%)o+ (Nm—w)2<(Ap) Jot

result of the CM decoupling from the internal motion, as if

the stochastic terms in E435) were absent. The operator 1 1

Z(Q) has thus the advantage of not needing additional con- + W<A{Q,P})0t2+ —2((AP)2)0t3 . (56

. . o 3M

jectures about the width parameter of the localization pro-

cess. with (A{Q,P})=({Q,P})—2(Q){P). The dispersions ap-
pearing in Eq(56) are computed for the pure initial state.

VIll. DECOHERENCE AND ENTROPY Back to the preferred basis problem, recall that Zurek

. . . gonsidered the free Heisenberg equations for the oscillator
The decoherence process resulting from the interaction o . .
operators P,Q) and obtained the linear entropy

the state vector for a macroscopic object with the CBR CarbD[((AQ)2>O+ L/(Nmw)2((AP)?)o] (N=1), averaged

be quantified by the rate of increase of either the linear or th%ver one oscillator period. So. this result corresponds only to
statistical entropy. In terms of the density matrix, the statis- b T P y

il enopy,  Measur of ur grorance, > GenelEgs e, coScTt (o1 1 Inear e cependonce n 86,
Ss=—Tr[ pIn(p)] (the subscript refers tostatistica). This d P

definition does not require that the system be in a thermali)e.havI0r also take place. Such a _behawor |nd|cat_es that, in
spite of the large number of particles, for large times the

equilibrium state. Alternatively, a good measure of the loss . .
of purity for states of an evolving open system is based 0r§nomentum plays an important role in the prpblem of the
) : . preferred observable because we have considered the free
the increase of the linear entroggubscriptl) [26] . X . . .
motion of anN-particle system instead of a single harmonic
S=Tr(p—p?). (54) oscillator.
Next, we estimate the rate of increase of the linear entropy IX. SUMMARY AND CONCLUSIONS
through the evolution of the density matrix given in the op-  In the GRWP model of continuous dynamical reduction
erator form by Eq(47). Considering a weak strength param- of the state vector it is assumed that each microscopic con-
eter (A~0) and the state vector remaining approximatelystituent of a system oN particles is subject to a sudden
pure (Tp®~1), up to first order inA we obtain collapse due to a spontaneous random hitting process con-
sisting in a localization of the wave function of the particle
) 1 within an appropriate rand&]. In what turns to be a remark-
S=4D| ((AQ)H)+ —2<(AP)2> : (65  able result the localization of a single constituent of the sys-
(Nma) tem of particles is sufficient to localize the whole system.
Such a spontaneous localization, considered as a fundamen-
where ((AQ)?) and ((AP)?), obtained from Eqs(42a—  tal physical process, induces a steady increase of the mean
(430), stand for the variances of the position and momentungnergy value of the physical system and so the increase in
OperatOI‘S and can be reWritten as funCtion Of theil‘ initialtemperature per unit time of the universe. When tak|ng into
values(Q)o and(P)o. account that the age of the universe is about®1€) the
In order to better understand the rate of increase of thgsRwP model leads to a total temperature increase from the
linear entropy in Eq(55), it is worth comparing it with that  peginning of the universe of 16 K, a value claimed to be
obtained by Zure26] who used the linear response model comparable with the cosmic background radiati@BR) of
of Caldeira and Leggef®9] (in the high-temperature limit 3 k.
With the above approximations Zurek obtaine§, In the present model for continuous dynamical reduction,
=4D((AQ)?) (for a single oscillato; so that the rate of also based in a stochastic differential equation describing a
increase of linear entropfin quantum Brownian motionis ~ Markovian evolution of state vectors, the random hitting pro-
proportional to the dispersion in position coordinate only—cess in GRWP model is substituted by the intervention of the
the preferred observable singled out by the interactiorCBR. Such a strategy is intended to maint@jrthe principle
Hamiltonian. In our approach, from E(b5) we observe that of conservation of energy, ari) the claim that the universe
no preferred observable emerges from the dynamic equatiaoriginated from the Big Bang leaving the CBR as a signa-
(35) (the dispersion in momentum is also pregenbntrary ture. In(i) the increase or decrease of the CM mean energy
even to the CSL model where the position representation isf the system oN particles is subject to a stochastic inter-
taken from the outset as privileged. However, for a largeaction with the CBR, which acts as a reservoir(ili, taking
number of particlesN>1), Eq. (55) indicates that the dis- the opposite direction to the GRWP arguménmhich claims
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that the present temperature of the universe comes from thtbe GRWP model. As well as the parameierin GRWP
increase of the total energy arising from the random hittingmodel, ourA is weak enough in the sense that it does not
procesy we propose that the CBR temperature plays an imaffect the dynamics of a unique particle, even in the case in
portant role in the reduction of thi-particle wave packet. Wwhich its wave function is spatially spre].
So, we assumed, in agreement with the standard cosmology, Finally, we point out that the ltequation is not derived
that the Universe has originated from a hot state and coolinffom a physical picture of the background and associated
during its expansion, with decreasing mean photon energycattering processes of the CBR by the system of particles.
The Planck law for the thermal average boson number irﬂnstead of ConSidering a particular interaction and ChOOSing
CBR, indeed the best blackbody known, has recently beefome specific particle property sensible to the electric and
tested by the COBE satelli27]. The temperature of the Mmagnetic field of the CBR, we approached the problem by
CBR, decreasing as the mean photon energy decreases dugngdeling the interaction by a stochastic coupling, such that
the cosmic expansion, makes the mass of the system incred§e dynamics could be described by andtpuation. We have
ingly more important for the transition from quantum to clas-considered an effective strength parameteaccounting for
sical description. On this basis one can argue that the qua@! kind of light-particle scattering processes. We also stress
tum nature of the Universe becomes increasingly importanthat our precursof34) to the master equatidmith respect to
as it is cooling. In fact, for the early Universe, the number ofthe particleg still has information on both, the system of
particles does not play a fundamental role in estimating th@articles and the CBR, since it contains operators of both
decoherence time, where higher temperat(gstself) turn ~ subsystems. This approach is different from the usual one
the system from micro- to macrodynamics. However, as th&vhere for getting a master equation it is necessary to trace
universe becomes cooler the number of particles become¥/er the environment degrees of freedom, as is done in the
increasingly important. theories of Joos and Zeh and Caldeira-Leggett or even in
Moreover, the present model leads to realistic results fofluantum optics. In our model it is possible to calculate cor-
decoherence times. While in the GRWP model the valudelations between observables of both subsystems. However,
1077 s obtained for a system of particles to go from micro-We have to get rid of CBR degrees of freedom, B9), just
to macrodynamics seems to be too large, the valué16 because the available information on the CBR subsystem is
here obtained for a system bfatoms in the low-frequency SParse, consisting of the blackbody radiation distribution

regime is comparable to the decoherence time obtained frofynction at 3 K. Thus the master equati(88) expressed in
the Caldeira-Leggett model. the CM positional representation, E@.9), incorporates the

As mentioned, whereas the GRWP model requirpe\a- similar equations obtained in both theories, Joos and Zeh and
|eged positiona| Spacm the present modeL by Construction, Caldeira-Leggett. The main difference between the three ap-
the stochastic operator acts on the CBR spectrum, carryingroaches stem in the nature of the diffusion constax@):
the same status for both the position and the momenturt Joos and Zeh the DC originates from the scattering of
space. The GRWP's result, the wave function collapse of &lectromagnetic waves by small objects; in Caldeira-Leggett
single particle induces the collapse of the wave function oft comes from the fluctuations arising from energy dissipa-
the whole system, was obtained exactly from the choice ofion of the system of interest to a thermal reservoir. In our
the position as a preferred basis. The same result fo”OWmOdel the DC Originates from the stochastic interaction be-
from our model without the choice of the position as a pre-tweenN particles of massn and the CBR at temperatuiie
ferred basis. However, it has to be mentioned that in spite of
attributing the same status for the position and the momen-
tum space, when analyzing the entropy under the process of ACKNOWLEDGMENTS
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Another interesting feature is that we do not claim for an

additional assumptiorio decouple collective from internal
motion as the required large width parameter 12
~10"° cm in the GRWP model. The random operator
Z(Q) here assumed, besides being a more conventional Due to the normalized Lorentzian spectr{ify. (28)], the
choice since it is associated to a reser¢GBR), leads to the integral accounting for the temperature of the CBR re&ads
advantage of decoupling the CM and internal motion without=1+2dQT'(Q){n)q. Now, since the Planck’s distribu-
additional assumption beyond that usually assumed for a region (n), diverges wher) goes to zero, the same occurs to
ervoir. the remaining integraJ dQT'(Q){n), . However, as usual,
The random operator describing the interaction betweemwe assume that the spectrui{{2) has its maximum far
the system and the CBR carries only one parameter, thaway from zero in order to cancel the divergence coming
strengthA, instead of the two free parameters, as required irfrom (n), . In what follows we are going to estimate under
the GRWP model ¢ and the mean frequenay). In our  which conditions this approximation is valid.
model, the coupling of the CBR to the system, proportional After the transformation$) r.=x and y=#A/kgT7., the
to A, corresponds to the random pseudopotentta[12] of  remaining integral reads

APPENDIX: CALCULATION OF INTEGRAL T
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1+ 1 1 £ 41
fmdx[x—<m+i>][x—(mc—i>] oy MY o

-l (A4)
v

which can be solved in the complex space through Jordan’§he analysis of the above result will be restricted to the

lemma, |eading to the result condition g/p<l, with &1, under which the sum |(A4)
can be disregardeince everé?/p<1), and the first term
1 1 1> 1 in (A3) gives us 1/€"“/*sT— 1), in a way that the Lorentzian
2i 57 W+ — 2 (1— 5 On o) distribution I'(Q) acts practically as & function [ 5()
ertere™—1 ¥ n=0 —w)]. In fact, the limit £&<1, leads to the conditiono

STc_l, so that the frequency can be taken far away from
zero since, as discussed above, we are considering an ex-

« 1 tremely short correlation timéMarkovian approximation
) 27n _ 2mn Under such a condition it is expected that the Lorentzian
or+i| 1= y wre—I| 1+ y functionT” acts indeed as & function, which means that the

action of the reservoir over the system of particles is re-
(A2) stricted to the oscillators whose frequencies are closely re-
lated tow. So, the problem of how fan has to be from zero,
in order to eliminate the divergence coming from Planck’s
distribution whenw— 0, depends exactly on the Lorentzian
height in its maximum. Moreover, the conditiofip<<1,
with ¢é<1, holds for both the low- and high-frequency re-
cog élp)et—1 gimes. Whené~1 (so that w~7, %), we get the high-
P frequency regimé o>kgT, whereas fo€<1 even the low-
efle*—2codé/p)]+1 frequency regime is allowed. For the latter case we have to
pd & n assure that & w<7_ ', not only to get rid of the divergence
— 87— E ) arising from(n),,, but also to hold the assumption of highly
& 0=1 [1+p®— (2mnpl )?]+ (4mnp?l §)? excited oscillations of the CBR leading to the Markovian
(A3) approximation. Summarizing, under the conditions estab-
lished above we get the resdlt-1+2(n),,, which holds for
For largen the second term ofA3) reduces to the high- and low-frequency regime.

It can be shown that the imaginary term coming from the
above result is zero. Now, denoting=p/&, where the pa-
rametem is equal toh w/kg T whereas= wr., the real term
coming from(A2), reads
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