749 research outputs found

    Prune Belly Syndrome

    Get PDF
    Two cases of prune belly syndrome in Black infants are presented. The prune belly syndrome, or congenital absence of abdominal muscles, is accompanied by hydro-ureter, hydronephrosis, megalocystis and usually undescended testes. Other associated congenital defects occur, of which orthopaedic defects appear to be the most prevalent. Others are patent urachus, congenital heart malformation, anomalies of the eyes and ears, ectodermal dysplasia, torticollis and micrognathia.S. Afr. Med. J., 48, 839 (1974)

    Introducing EbolaCheck: potential for point-of-need infectious disease diagnosis

    Get PDF
    The 2013–2015 Ebolavirus disease humanitarian crisis has spurred the development of laboratory-free, point-of-care nucleic acid testing solutions. EbolaCheck is an international consortium of public health, academic and biotechnology industry stakeholders aiming to deliver clinical molecular diagnostic standard-of-care testing suitable for the West African milieu within 12 months. In this article, the current status of the EbolaCheck platform is discussed in the context of the current regulatory framework. Presented here are future goals to achieve differential diagnosis of hemorrhagic fever disease from <5-μl of whole blood samples or mucosal biofluids, in a single tube process, under 40 min and with minimal operator training requirements

    Behavioural observations of the common octopus Octopus vulgaris in Baía dos Tigres, southern Angola

    Get PDF
    The common octopus Octopus vulgaris (Cuvier 1797) is a shallow-water cephalopod species that inhabits coastal rocky areas or reefs. It is the most studied and widely distributed species in its genus. This species has a short lifespan and a rapid growth rate of over 5% of body weight per day (García and Valverde 2006, Ibáñez and Keyl 2010). It is semelparous, with females laying large strings of eggs that they attach to the substrata in their dens (Hernández- García et al. 2002). There is a paucity of information on the preferred habitat and behaviour of O. vulgaris in its natural environment (Anderson 1997, Meisel et al. 2006). The species has been classified as highly mobile, yet resident individuals may exhibit high levels of territoriality. Its mobility allows it to move efficiently between a wide range of suitable habitats (Katsanevakis and Verriopoulos 2004). Octopus make use of both tactile and visual senses to forage, feed and seek suitable shelter (Forsythe and Hanlon 1997, Carvalho and Sousa Reis 2003, Rodríguez-Rúa et al. 2005). They are active feeders that seek out prey such as crustaceans, sessile molluscs and small fish (Forsythe and Hanlon 1997, Boyle and Rodhouse 2005), as well as their smaller conspecifics (Ibáñez and Keyl 2010). The majority of behavioural ecology studies on octopus have been on captive individuals. However, the activity patterns (Mather 1988), foraging strategies and aspects of the movement behaviour (Mather and O’Dor 1991) of juvenile O. vulgaris in the wild were described for an exploited population in Bermuda. Because intertidal octopus stocks are exploited by recreational, subsistence and artisanal fisheries (e.g. Oosthuizen and Smale 2003, Sauer et al. 2011), there are few opportunities to study the behavioural ecology of unexploited populations. An opportunity arose to study various behavioural patterns in an unexploited population in Baía dos Tigres, a large (~200 km2) coastal embayment situated on an isolated stretch of the southern Angolan coast (Figure 1). This study provides information on the population size structure, aspects of the movement behaviour, activity patterns and foraging strategies of O. vulgaris in this largely unstudied coastal embayment

    Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

    Get PDF
    There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage

    I Know My Neighbour: Individual Recognition in Octopus vulgaris

    Get PDF
    Background: Little is known about individual recognition (IR) in octopuses, although they have been abundantly studied for their sophisticated behaviour and learning capacities. Indeed, the ability of octopuses to recognise conspecifics is suggested by a number of clues emerging from both laboratory studies (where they appear to form and maintain dominance hierarchies) and field observations (octopuses of neighbouring dens display little agonism between each other). To fill this gap in knowledge, we investigated the behaviour of 24 size-matched pairs of Octopus vulgaris in laboratory conditions. Methodology/Principal Findings: The experimental design was composed of 3 phases: Phase 1 (acclimatization): 12 ‘‘sightallowed’’ (and 12 ‘‘isolated’’) pairs were maintained for 3 days in contiguous tanks separated by a transparent (and opaque) partition to allow (and block) the vision of the conspecific; Phase 2 (cohabitation): members of each pair (both sight-allowed and isolated) were transferred into an experimental tank and were allowed to interact for 15 min every day for 3 consecutive days; Phase 3 (test): each pair (both sight-allowed and isolated) was subject to a switch of an octopus to form pairs composed of either familiar (‘‘sham switches’’) or unfamiliar conspecifics (‘‘real switches’’). Longer latencies (i.e. the time elapsed from the first interaction) and fewer physical contacts in the familiar pairs as opposed to the unfamiliar pairs were used as proxies for recognition. Conclusions: Octopuses appear able to recognise conspecifics and to remember the individual previously met for at leas

    Comparing Biological Motion Perception in Two Distinct Human Societies

    Get PDF
    Cross cultural studies have played a pivotal role in elucidating the extent to which behavioral and mental characteristics depend on specific environmental influences. Surprisingly, little field research has been carried out on a fundamentally important perceptual ability, namely the perception of biological motion. In this report, we present details of studies carried out with the help of volunteers from the Mundurucu indigene, a group of people native to Amazonian territories in Brazil. We employed standard biological motion perception tasks inspired by over 30 years of laboratory research, in which observers attempt to decipher the walking direction of point-light (PL) humans and animals. Do our effortless skills at perceiving biological activity from PL animations, as revealed in laboratory settings, generalize to people who have never before seen representational depictions of human and animal activity? The results of our studies provide a clear answer to this important, previously unanswered question. Mundurucu observers readily perceived the coherent, global shape depicted in PL walkers, and experienced the classic inversion effects that are typically found when such stimuli are turned upside down. In addition, their performance was in accord with important recent findings in the literature, in the abundant ease with which they extracted direction information from local motion invariants alone. We conclude that the effortless, veridical perception of PL biological motion is a spontaneous and universal perceptual ability, occurring both inside and outside traditional laboratory environments

    Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland)

    Get PDF
    The 2014–2015 Bárðarbunga-Veiðivötn fissure eruption at Holuhraun produced about 1.5 km3 of lava, making it the largest eruption in Iceland in more than 200 years. Over the course of the eruption, daily volcanic sulfur dioxide (SO2) emissions exceeded daily SO2 emissions from all anthropogenic sources in Europe in 2010 by at least a factor of 3. We present surface air quality observations from across Northern Europe together with satellite remote sensing data and model simulations of volcanic SO2 for September 2014. We show that volcanic SO2 was transported in the lowermost troposphere over long distances and detected by air quality monitoring stations up to 2750 km away from the source. Using retrievals from the Ozone Monitoring Instrument (OMI) and the Infrared Atmospheric Sounding Interferometer (IASI), we calculate an average daily SO2 mass burden of 99 ± 49 kilotons (kt) of SO2 from OMI and 61 ± 18 kt of SO2 from IASI for September 2014. This volcanic burden is at least a factor of 2 greater than the average SO2 mass burden between 2007 and 2009 due to anthropogenic emissions from the whole of Europe. Combining the observational data with model simulations using the United Kingdom Met Office's Numerical Atmospheric-dispersion Modelling Environment model, we are able to constrain SO2 emission rates to up to 120 kilotons per day (kt/d) during early September 2014, followed by a decrease to 20–60 kt/d between 6 and 22 September 2014, followed by a renewed increase to 60–120 kt/d until the end of September 2014. Based on these fluxes, we estimate that the eruption emitted a total of 2.0 ± 0.6 Tg of SO2 during September 2014, in good agreement with ground-based remote sensing and petrological estimates. Although satellite-derived and model-simulated vertical column densities of SO2 agree well, the model simulations are biased low by up to a factor of 8 when compared to surface observations of volcanic SO2 on 6–7 September 2014 in Ireland. These biases are mainly due to relatively small horizontal and vertical positional errors in the simulations of the volcanic plume occurring over transport distances of thousands of kilometers. Although the volcanic air pollution episodes were transient and lava-dominated volcanic eruptions are sporadic events, the observations suggest that (i) during an eruption, volcanic SO2 measurements should be assimilated for near real-time air quality forecasting and (ii) existing air quality monitoring networks should be retained or extended to monitor SO2 and other volcanic pollutants

    Iron Deficiency Increases Growth and Nitrogen-Fixation Rates of Phosphorus-Deficient Marine Cyanobacteria

    Get PDF
    Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles

    Natural killer (NK) cells from killers to regulators: Distinct features between peripheral blood and decidual NK cells

    Get PDF
    Natural killer (NK) cells are a key component of innate immunity, particularly crucial during the early phase of immune responses against certain viruses, parasites, and microbial pathogens. The role of NK cell during pregnancy has been vividly discussed over the past years and it is now becoming increasingly clear that NK cells control pregnancy maintenance at several levels. In normal pregnancy, it appears that they provide benefit by properly secreting cytokines, chemokines and angiogenic factors rather than functioning as cytotoxic effector cells. However, as they are endowed with all the cytolytic weapons, they promptly become capable of attacking fetal and maternal tissues during infection and inflammation. © 2007 The Authors Journal compilation 2007 Blackwell Munksgaard

    Camouflaging in a Complex Environment—Octopuses Use Specific Features of Their Surroundings for Background Matching

    Get PDF
    Living under intense predation pressure, octopuses evolved an effective and impressive camouflaging ability that exploits features of their surroundings to enable them to “blend in.” To achieve such background matching, an animal may use general resemblance and reproduce characteristics of its entire surroundings, or it may imitate a specific object in its immediate environment. Using image analysis algorithms, we examined correlations between octopuses and their backgrounds. Field experiments show that when camouflaging, Octopus cyanea and O. vulgaris base their body patterns on selected features of nearby objects rather than attempting to match a large field of view. Such an approach enables the octopus to camouflage in partly occluded environments and to solve the problem of differences in appearance as a function of the viewing inclination of the observer
    corecore