22 research outputs found

    The Quantum Nature of a Nuclear Phase Transition

    Get PDF
    In their ground states, atomic nuclei are quantum Fermi liquids. At finite temperatures and low densities, these nuclei may undergo a phase change similar to, but substantially different from, a classical liquid gas phase transition. As in the classical case, temperature is the control parameter while density and pressure are the conjugate variables. At variance with the classical case, in the nucleus the difference between the proton and neutron concentrations acts as an additional order parameter, for which the symmetry potential is the conjugate variable. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in 4^{4}He-3^{3}He liquid mixtures. We present experimental results which reveal the N/Z dependence of the phase transition and discuss possible implications of these observations in terms of the Landau Free Energy description of critical phenomena.Comment: 5 pages, 4 figure

    Chemical potential and symmetry energy for intermediate-mass fragment production in heavy ion reactions near the Fermi energy

    Get PDF
    Ratios of differential chemical potential values relative to the temperature, ({\ensuremath{\mu}}_{n}\ensuremath{-}{\ensuremath{\mu}}_{p})/T, extracted from isotope yields of 13 reaction systems at 40 MeV/nucleon are compared to those of a quantum statistical model to determine the temperature and symmetry energy values of the fragmenting system. The experimental ({\ensuremath{\mu}}_{n}\ensuremath{-}{\ensuremath{\mu}}_{p})/T values are extracted based on the modified Fisher model. Using the density value of \ensuremath{\rho}/{\ensuremath{\rho}}_{0}=0.56 from the previous analysis, the temperature and symmetry energy values of T=4.6\ifmmode\pm\else\textpm\fi{}0.4 MeV and {a}_{\mathrm{sym}}=23.6\ifmmode\pm\else\textpm\fi{}2.1 MeV are extracted in a framework of a quantum statistical model. These values agree well with those of the previous work, in which a self-consistent method was utilized with antisymmetrized molecular dynamics simulations. The extracted temperature and symmetry energies are discussed together with other experimental values published in literature

    FALSTAFF : a New Tool for Fission Fragment Characterization

    No full text
    Neutron for Science/SPIRAL2International audienceThe future Neutron For Science (NFS) facility to be installed at SPIRAL2 (Caen, France) will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest to the nuclear community, in view of the development of fast reactor technology, will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow for the simultaneous measurement of the velocity and energy of the complementary fragments. The performance of the time-of-flight detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown

    FALSTAFF: A new tool for fission studies

    No full text
    International audienceThe future NFS installation will produce high intensity neutron beams from hundreds of keV up to 40MeV. Taking advantage of this facility, data of particular interest for the nuclear community in view of the development of the fast reactor technology will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow the simultaneous measurement of the complementary fragments velocity and energy. The performances of TOF detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown

    Improvement of the intrinsic time resolving power of the Cologne iron-free orange type electron spectrometers

    No full text
    Conversion electron spectroscopy represents an important tool for nuclear structure analysis of medium and heavy nuclei. Two iron-free magnetic electron spectrometers of the orange type have been installed at the Institute for Nuclear Physics of the University of Cologne. The very large transmission of 15% and the very good energy resolution of 1% makes the iron-free orange spectrometer a powerful instrument. By means of fast timing techniques, lifetimes of nuclear excited states can be measured with an accuracy better than 20 ps. For the first time, the energy dependent centroid position of prompt events yielding the time-walk characteristics (the prompt curve) of the orange spectrometer fast timing setup has been measured using prompt secondary delta-electrons generated in a pulsed beam experiment. The prompt curve calibrated as a function of energy allows precise lifetime determination down to a few tens of picoseconds by the use of the centroid shift method. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499259
    corecore