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Abstract

Ratios of differential chemical potential values relative to the temperature, (µn−µp)/T , extracted

from isotope yields of thirteen reaction systems at 40 MeV/nucleon are compared to those of

a quantum statistical model to determine the temperature and symmetry energy values of the

fragmenting system. The experimental (µn − µp)/T values are extracted based on the Modified

Fisher Model. Using the density value of ρ/ρ0 = 0.56 from the previous analysis, the temperature

and symmetry energy values of T = 4.6 ± 0.4 MeV and asym = 23.6 ± 2.1 MeV are extracted in

a frame work of a quantum statistical model. These values agree well with those of the previous

work, in which a self-consistent method was utilized with antisymmetrized molecular dynamics

simulations. The extracted temperature and symmetry energies are discussed together with other

experimental values published in literature.

PACS numbers: 25.70Pq,21.65.Ef,24.10.-i

∗E-mail at:linwp1204@impcas.ac.cn
†E-mail at:wada@comp.tamu.edu

1



I. I. INTRODUCTION

The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of

nuclear and astrophysical phenomena [1, 2]. In violent collisions of heavy ion reactions near

the Fermi energy, different sizes of clusters, from deuterons to intermediate mass fragments

(IMFs) with 3 ≤ Z < 20, are copiously produced. The experimentally observed multiplicity

distribution of isotopes for a given Z shows a quasi-Gaussian shape with a peak near N = Z

as a function of mass [3]. This suggests that the production of these isotopes is closely related

to the symmetry energy, since the symmetry energy term is in proportional to (N−Z)2 in the

Weizsäcker-Bethe semiclassical mass formula [4, 5]. However the production mechanism of

these clusters is still debated. Global characteristic features of the experimental observables,

such as multiplicity, mass or charge distributions and energy spectra, are investigated both

by statistical multifragmentation models [6, 7] and by transport models [8–15], although they

are based on quite different assumptions. The former employs a freezeout concept, under

which the multifragmentation process takes place in equilibrated nuclear matter described

by parameters such as size, neutron/proton ratio, density and temperature. Piantelli et al.

analyzed the multifragmentation events of 129Xe+nat Sn at 30 to 50 MeV/nucleon, based on

a statistical model, i.e., a MMM version of the microcanonical statistical multifragmentation

model [16]. By optimizing parameters, they could reproduce the experimental results very

well. Fragment excitation energies of 3.0 to 3.5 MeV/nucleon and an emission volume of

3.9 to 5.7 V0, where V0 is the volume of the composite system at normal density, were

extracted as the freezeout properties of the multifragmenting system. On the other hand,

Zbiri et al. analyzed the events from Au +Au at 60 and 150 MeV/nucleon using a quantum

molecular dynamics transport model (QMD) [17], in which nucleon propagation in a mean

field and nucleon-nucleon collisions under Pauli-blocking are two main physical ingredients.

They also reproduced the global features of the experimental results and concluded that

the dynamical processes play a significant role in the multifragmentation. In our previous

works, similar results were also obtained in reactions, 64Zn +58 Ni, 92Mo, 197Au between 35

to 79 MeV/nucleon, where the antisymmetrized molecular dynamics (AMD) code of Ono et

al. [14, 18–21] was employed [22, 23]. In our recent work of Ref. [24], we suggested that a

freezeout occurs in AMD simulations. This conclusion was reached by studying the density

and temperature of the fragmenting source as a function of the incident energy, utilizing a
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self-consistent method [25, 26] for 40Ca+40Ca at 35 to 300 MeV/nucleon. This result provides

a bridge between the statistical multifragmentation models and the transport models.

Investigations of the symmetry energy, especially focussing on its density dependence,

have been conducted using many observables such as isotopic ratios [27], isospin diffu-

sion [28], neutron-proton emission ratios [29], giant monopole resonances [30], pygmy dipole

resonances [31], giant dipole resonances [32], collective flow [33] and isoscaling [34–36] among

others. Ono et al. introduced a generalized free energy, K(N,Z), and extracted the symme-

try energy coefficient relative to the temperature, asym/T , from quadratic distributions of

the IMF yields [37, 38]. In our previous works, asym/T was experimentally extracted using

isobaric yield ratios [39, 40] and m-scaling [41] within the framework of the Modified Fisher

Model (MFM) [42–45]. In Ref. [25], we proposed a self-consistent method based on MFM

to evaluate the density, temperature and symmetry energy by comparing the experimental

asym/T values to those for the primary fragments generated by AMD with three different

density-dependent symmetry energy interactions. Applying this method to the experimen-

tally reconstructed primary isotope yields from the reaction of 40 MeV/nucleon 64Zn+112 Sn

system [3], we extracted ρ/ρ0 = 0.56± 0.02, T = 5.2± 0.6 MeV and asym = 20.8± 0.6 MeV

for the fragmenting system [26].

In this work, the ratio of proton-neutron differential chemical potential relative to the

temperature, (µn−µp)/T (hereafter denoted as ∆µ/T ), is extracted from the isotope yields

from thirteen reaction systems. These results are compared to those predicted by the quan-

tum statistical model (QSM) of Harn and Stöcker [46] to determine the temperature and

symmetry energy of the fragmenting systems. This article is organized as follows. In Sec.

II, we briefly summarize the experiment. In Sec. III, the moving-source fit, the extraction of

the temperatures and symmetry energies of the fragmenting systems are described and the

results are presented. In Sec.IV, symmetry energy extraction at Fermi energies and sym-

metry energy constraints at subsaturation densities are discussed. In Sec. V, a summary is

given.

II. II. EXPERIMENT

The experiment was performed at the K-500 superconducting cyclotron facility at Texas

A&M University. 64,70Zn and 64Ni beams were used to irradiate 58,64Ni, 112,124Sn, 197Au
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and 232Th targets at 40 MeV/nucleon. 13 reaction systems were analyzed for the present

work. They are 64Zn +112 Sn, 70Zn, 64Ni on 112,124Sn, 58,64Ni, 197Au, 232Th. Intermediate

mass fragments (IMFs) were detected by a detector telescope placed at 20◦. The telescope

consisted of four Si detectors. Each Si detector was 5 cm × 5 cm. The nominal thicknesses

were 129, 300, 1000, 1000 µm, respectively. All four Si detectors were segmented into four

sections and each quadrant had a 5◦ opening in polar angle. Typically 6 ∼ 8 isotopes

for atomic numbers Z up to Z = 18 were clearly identified with the energy threshold of

4 ∼ 10 MeV/nucleon, using the ∆E −E technique for any two consecutive detectors. Mass

identification of the isotopes was made using a range-energy table [47]. The yields of light

charged particles (LCPs) in coincidence with IMFs were also measured using 16 single-

crystal CsI(Tl) detectors of 3 cm length set around the target at angles between θLab = 27◦

and θLab = 155◦. The light output from each detector was read by a photomultiplier tube.

The pulse shape discrimination method was used to identify p, d, t, 3He, and α particles.

The energy calibrations for these particles were performed using Si detectors (50 ∼ 300 µm)

in front of the CsI detectors in separate runs. For the neutron detection, 16 detectors of

the Belgian-French neutron detector array DEMON (Detecteur Modulaire de Neutrons) [48]

were used. The detectors were distributed to achieve opening angles between the telescope

and the detector of 15◦ ≤ θIMF−n ≤ 160◦. Neutron/γ discrimination was obtained from a

pulse shape analysis, by comparing the slow component of the light output to the total light

output. The neutron detection efficiency of the DEMON detector, averaged over the whole

volume, was calculated using the GEANT code [49].

The event class identification in this experiment is crucial for the following analysis. The

events triggered by IMFs in this experiment are ”inclusive”, but they belong to a certain

class of events. In the experiment, the telescope at θ = 20◦ was used as the main trigger.

The angle of the telescope was optimized to be small enough so that sufficient IMF yields

were obtained above the detector energy threshold but large enough so that the contribution

from peripheral collisions was negligible. In order to understand the event class taken in this

experiment, based on the analysis in Ref. [23], AMD simulations [20] are used to evaluate

the impact parameter range in the present data set. According to the comparison between

the experiment and AMD simulations, it is found that IMFs are generated copiously in a

wide impact parameter range more or less equally, that is, more than 80% of the observed

IMF yields originate from the impact parameter range b ≤ 8 fm. A detailed discussion is
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given in Ref. [50].

In order to further define the properties of fragmenting source involved in the reaction

products, a moving-source fit technique is employed, which is described below.

III. III. RESULTS

a. Moving-source analysis

In order to characterize the fragmenting source, a moving-source analysis is employed. A

detail description of a moving-source method is given in Ref. [51] and a partial analysis of

the moving-source fit performed for IMFs in this analysis has been given in Ref.[40, 50], and

therefore, a brief description for neutrons and light-charged particles (LCPs) is presented

here. Some of typical energy spectra of neutrons and LCPs in coincidence with IMFs are

shown in Fig. 1. No 3He spectra are shown because of poor identification in CsI and/or

poor statistics. Since the measured angles are larger than θlab > 20o where the projectile-

like fragment (PLF) source component has negligible contributions to these spectra, two

sources, a nucleon-nucleon (NN) source and a target-like fragment (TLF) source are used

for the moving-source fit. The NN source has a source velocity close to a half beam velocity

and is described by a volume type Maxwellian, and the TLF source has a small source

velocity with a surface type Maxwellian [51]. In order to optimize the four parameters

in each source, multiplicity, slope parameter, the Coulomb energy for LCPs, and source

velocity, Minuit in the Cern library has been used. Typical fit results are shown by different

(color) lines as specified in the figure caption. As one can see, two source components, NN

and TLF, dominate in distinct two angular ranges, that is, the NN source dominates in the

top 3-4 spectra and the TLF source dominates in the bottom 3-4 spectra for all cases studied.

Therefore four parameter values for each source are essentially determined by the spectra

in these two distinct angular ranges. The extracted multiplicity values of the NN source of

neutrons, LCPs and IMFs for all 13 reactions are given in SUPPLEMENTAL MATERIAL

of this article [52]. The errors given are estimated as follows. Minuit gives errors for each

searched parameter. However in most cases resultant errors for the multiplicities are in an

order of 1% or less, because there are many local minima for the multiple parameter fits. In

order to get more realistic errors for the multiplicities, several different optimizations have
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been performed, which includes different initial values, a fixed source velocity or energy slope

with an averaged values, fixed parameter values in different angular ranges. The extracted

multiplicities within 10% from the minimum χ-square values are plotted as a function of

multiplicity. For LCPs and neutrons, 10% of the multiplicity values are estimated as the

maximum differences for different optimization conditions. For neutrons, an additional 5%

error is added from the neutron efficiency calculation [49]. These values are set as the errors

of the multiplicities, if the error given by Minuit is smaller. In a few case the errors from

the Minuit is larger than this criterion and the error is taken as they are in the table.

For IMFs, two independent data sets for 64Zn +112 Sn are analyzed independently and the

difference in multiplicity values are plotted as a function of the multiplicity. The differences

distribute around 5% for M ∼ 0.3 to 50% for M ≤ 0.001. These are generally much larger

than the errors given by Minuit. The differences are fit by a function f(M) to evaluate

the maximum for a given M value. Most of the differences are smaller than an empirical

function f(M) = 0.03M0.6 with an upper limit of 50%. This function is used to estimate

the errors for the IMFs multiplicity in SUPPLEMENTAL MATERIAL.

b. NN-source size and Z/A ratio

The size and Z/A ratio of the NN source (ANN and (Z/A)NN) are directly evaluated

using the NN-source multiplicities (M) given in SUPPLEMENTAL MATERIAL as

ANN =
∑

i

Ai ·Mi, (1)

(Z/A)NN = (
∑

i

Zi ·Mi)/(
∑

i

Ai ·Mi), (2)

where Ai and Zi are the mass and charge numbers of the ith isotope and the summation

is taken over all measured particles, including neutrons, LCPs and IMFs with Z up to 18.

We have found that the contribution of the Z > 18 IMFs, which were not isotropically

identified in the experiment and are missing in Eqs. (1) and (2), is less than 1%. In Figs. 2

and 3, the size and Z/A ratio of the NN source are plotted as functions of those of the

system, respectively. As shown in Fig. 2, the NN-source size varies from ∼ 40 to ∼ 90,

which is much smaller than the size of each reaction system studied (from 122 to 302). This

rather small size of the NN source indicates that the particles are commonly produced by

a multifragmentation of a part of the projectile-target overlap region, and this similarity
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FIG. 1: (color online) Neutrons and light charged particle energy spectra at different θlab in coincidence

with IMFs with Z ≥ 3 for the 64Ni +112 Sn reaction. The differential multiplicity is given in the absolute

scale, but multiplied by a factor of 10n(n = 0 − 7) from the top to the bottom spectra. For neutrons,

θlab = 25◦, 31◦, 40◦, 67◦, 85◦, 104◦, 120◦, 140◦ and for LCPs, θlab = 36◦, 47◦, 57◦, 70◦, 115◦, 135◦, 145◦, 155◦

from top to bottom. Red dashed lines represent the NN-source component, blue dotted lines for the TLF

source component and the black solid lines for the summation of them.

of the production mechanism enables us to analyze the data from quite different reaction

systems on a common basis as seen in our previous works [38–41]. Fig. 3 indicates that

the Z/A ratios of the NN sources are distributed slightly below the values of the 1 to 1

mixing of the projectile and the target nucleons (dashed line), that is, the NN source is

always slightly more neutron-rich than those of the simple overlap region of the projectile

and target. This is an experimental indication for the neutron migration from the cool
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FIG. 2: NN-source size versus system size, where Asystem = Aproj +Atarg. Data points are fit by a linear

function and the parameters are shown in the figure.

projectile-like and target-like zones to the hot overlap zone in the heavy ion collisions at

Fermi energies [34, 36]. This phenomenon, which is called isospin migration or isospin

fractionation, has been also predicted by model simulations of the semi-peripheral collisions

at this energy region [10, 53, 54].

As shown in Figs. 2 and 3, both ANN vs Asystem and (Z/A)NN vs (Z/A)system plots show

rather linear relations. The obtained results are fit by linear functions, respectively, and the

fitting results are given by

ANN = 0.335 · Asystem, (3)

(Z/A)NN = 0.931 · (Z/A)system. (4)

c. Differential chemical potential relative to temperature

The ratio of differential chemical potential relative to the temperature, ∆µ/T , can be

extracted from the isotopic yield ratios, using the Modified Fisher Model (MFM) [42]. The

formulation of MFM is given in APPENDIX. In the framework of MFM, thermal and chem-

ical equilibriums are assumed, and the yield of an isotope with mass A and I = N − Z (N

neutrons and Z protons) produced in a multifragmentation reaction, can be given as [38–

8



system
(Z/A)

0.4 0.45 0.5

N
N

(Z
/A

)

0.3

0.35

0.4

0.45

0.5

system
 = 0.931(Z/A)

NN
(Z/A)

FIG. 3: (color online) NN-source Z/A versus system Z/A, where (Z/A)system = (Zproj + Ztarg)/(Aproj +

Atarg). Data points are fit by a linear function (solid line) and the parameters are shown in the figure.

Dashed line indicates the values of 1 to 1 mixing between the projectile and target for all 13 systems.

45, 55]

Y (I, A) =Y0 · A
−τexp[

W (I, A) + µnN + µpZ

T
+ Smix]. (5)

A−τ represents the entropy of the fragment from TτlnA in Eq. (21) in APPENDIX and Smix

is the mixing entropy defined in Eq. (27) in APPENDIX. As noted in errata in Refs. [26, 59],

the MFM formula in Refs. [43, 44] has an error in describing the mixing entropy as an op-

posite sign. This has been corrected in the present work. τ is the critical exponent. In the

present work, the value of τ = 2.3 is adopted from the previous studies [45]. Using the gen-

eralized Weizsäcker-Bethe semiclassical mass formula [4, 5], W (I, A) can be approximated

as

W (I, A) =avA− asA
2/3 − ac

Z(Z − 1)

A1/3

− asym
(N − Z)2

A
− ap

δp
A1/2

,

δp =−
(−1)Z + (−1)N

2
.

(6)

µn (µp) is the neutron (proton) chemical potential. In general coefficients (av, as, ac, asym

and ap) and the chemical potentials are temperature and density dependent. In the given

formulation in APPENDIX, a constant volume process is assumed in the free energy, and
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therefore the term ”symmetry energy” is used throughout this work. If one assumes a

constant pressure [56], the term ”symmetry enthalpy” should be used. Experimentally, the

exact conditions can not be determined, and thus we use ”symmetry energy” throughout

this article [57]. In Eq. (6), the symmetry term is given as a net symmetry energy of the

volume and surface contributions [58]. This is because at a finite temperature, notable

surface dependence of the symmetry energy is not observed in AMD simulations [25, 36, 39]

and experiments [26, 38, 50].

Following Ref. [39], the isotope yield ratio between isobars with I+2 and I, R(I+2, I, A),

is utilized, which is

R (I + 2, I, A) = Y (I + 2, A)/Y (I, A)

= exp{[µn − µp + 2ac(Z − 1)/A1/3

− 4asym(I + 1)/A− δ(N + 1, Z − 1)

− δ(N,Z)]/T +∆(I + 2, I, A)}, (7)

where ∆(I+2, I, A) = Smix(I+2, A)−Smix(I, A) and Smix(I, A) = Nln(N/A)+Zln(Z/A).

When the above equation is applied for a pair of mirror nuclei of odd mass isotopes with

I = −I and I, the symmetry energy term, pairing term and mixing entropy terms drop out

and the following equation is obtained.

ln[R(I,−I, A)]/I = [∆µ + ac(A− 1)/A1/3]/T. (8)

The left side of Eq. (8) is calculated from the experimentally obtained mirror isobar yields,

and ∆µ/T and ac/T are optimized by fitting the calculated ln[R(I,−I, A)]/I using the right

side of Eq. (8). Focusing on the I = 1 and I = −1 isotopes, for a typical system 64Zn+112Sn,

the ln[R(1,−1, A)] values as a function of A and the corresponding fit using Eq. (8) are given

in Fig. 4. Similar quality results are obtained for the other reaction systems [39]. Using the

fact that the Coulomb term in Eq. (8) is only related to the chosen isotopes and therefore

independent of the different reaction systems under similar fragmenting conditions, the

same ac/T value from the 64Zn +112 Sn reaction is used to extract the ∆µ/T values as free

parameters from the different reaction systems [39]. The resultant ∆µ/T values extracted

from all 13 systems are plotted as a function of (Z/A)NN using open symbols in Fig. 5, where

(Z/A)NN is calculated using Eq. (2). A monotonically decreasing trend of the experimental
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FIG. 4: ln[R(1,−1, A)] as a function of A directly from the experimentally observed IMF yield from

64Zn +112 Sn. The curve is the fit of data points using Eq. (8). The optimized ∆µ/T and ac/T values are

0.71 and 0.35, respectively.

(secondary) ∆µ/T as (Z/A)NN increases is observed in Fig. 5. This trend is a natural

consequence of the decreasing neutron richness of the extracted source.

d. Sequential feeding for ∆µ/T

When fragments are emitted from the source, many of them are in excited states and

cool by evaporation processes before they are detected. The sequential decay of these pri-

mary hot fragments significantly alters the yield distribution and distorts the information

in the primary yields [50, 59, 60]. The sequential decay process is employed in slightly dif-

ferent ways in three models used in this analysis, AMD+GEMINI [61], SMM and QSM, but

the sequential decay process is well established and well coded. Therefore, for a quantita-

tive evaluation of the sequential decay effect on ∆µ/T , the statistical multifragmentation

model (SMM) of Bondorf et al. [7, 62] is employed. SMM assumes fragments are formed

in a given source under a statistical equilibrium within a freezeout volume. In the thermo-

dynamic limit, this process in SMM is consistent with a possible nuclear liquid-gas phase

transition [63–65]. These hot primary fragments propagate independently in their mutual

Coulomb field and undergo de-excitation to the ground state. The calculated yields of the

cold fragments after the secondary decays reasonably reproduce the experimental data from
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FIG. 5: Open circles: the ∆µ/T values from the experimentally observed IMF yields from all 13 systems

as a function of (Z/A)NN ; full circles: the ”primary” ∆µ/T values feeded using Eq. (9) as a function of

(Z/A)NN , where (Z/A)NN is calculated using Eq. (2).

both peripheral and central heavy ion collisions at intermediate energies [66–68].

For the present analysis, SMM is utilized to simulate the breakup of A = 100 sources

with different Z numbers (i.e., Z = 45, 50 and 55), under different excitation energies (i.e.,

Ex = 5 and 10 MeV), different freezeout volumes (i.e., V/V0 = 3.0, 5.0 and 10.0). For each

case, 100,000 events are computed, and both primary and secondary production yields are

determined. Following the same method mentioned in Sec. III(b), ∆µ/T values are extracted

from the primary and secondary isotope yields generated by SMM. The relations between

the extracted primary and secondary ∆µ/T ((∆µ/T )Pri. and (∆µ/T )Sec.) values are shown

in Fig. 6, for the SMM calculations with different initial conditions. As plotted in the figure,

(∆µ/T )Pri. correlates linearly with (∆µ/T )Sec., and this linear relation holds in a wide region

of excitation energy and freezeout volume, i.e., Ex = 5 ∼ 10 MeV and V/V0 = 3.0 ∼ 10.0,

indicating the breakup process and the statistical decay process are independent of each

other. The obtained values of (∆µ/T )Pri. and (∆µ/T )Sec. under different conditions are

globally fit by a linear function and the fitting result is given by

(∆µ/T )Pri. = 1.25 · (∆µ/T )Sec. + 1.12, (9)
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FIG. 6: (color online) Calculated (∆µ/T )Pri. vs (∆µ/T )Sec. The results from the SMM calculations are

shown by solid symbols and those from the AMD-GEMINI are shown by open circles. The reaction systems

used for the AMD+GEMINI simulation are 58Ni +58 Ni, 58Fe +58 Fe at 45 MeV/nucleon and 64Zn +112 Sn

and 64Ni +124 Sn at 40 MeV/nucleon. Data points from SMM are globally fit by a linear function and the

parameters are shown in the figure.

where the fitting parameters, 1.25 and 1.12, are only related to the statistical decay process.

In order to verify the SMM results, AMD+GEMINI simulations are analyzed for some of

reaction systems. The results of the AMD+GEMINI simulations are shown by open circles

in the figure and as seen in the figure they are consistent to those of SMM. The scaling

relation in Eq. (9) can be applied to the experimental yields to evaluate the sequential

effect on the experimentally extracted ∆µ/T values quantitatively. The scaling invariance

shown in Fig. 6 also suggests that Eq. (9) can be applied to reactions over a wide incident

energy region. Using Eq. (9), for all 13 systems, the ”primary” ∆µ/T values are derived

from those of the experimentally observed IMF yields and shown by full circles in Fig. 5

together with the experimentally extracted ones (open circles). The ”primary” ∆µ/T as a

function of (Z/A)NN also shows a monotonic decreasing trend, due to the linear mapping.

Since (Z/A)NN is same before and after the sequential decays, the monotonic behavior of

the primary ∆µ/T as function of (Z/A)NN originates from the characteristic properties of

the NN source. This is further utilized to determine the temperature of the NN source and

the symmetry energy in the following analysis.
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e. Temperature

In order to evaluate the temperature at the time of the fragment formation from the

primary ∆µ/T values evaluated above, QSM is employed. QSM assumes thermal and chem-

ical equilibrium and the primary fragment formation is characterized by the neutron and

proton chemical potentials, which are optimized using quantum statistical distributions at

a given density ρ, temperature T and N/Z ratio of the system. It has been applied to study

the characteristic nature of the IMF emitting source produced in heavy ion reactions in the

energy range of 30 MeV/nucleon to 15 GeV/nucleon [69–73].

As presented in Refs. [69–73], the density and temperature of the source are closely

correlated for a given entropy, that is, the temperature increases as the density increases to

obtain the same entropy. The entropy is closely related to the experimental isotope yield

ratios. In other words, within QSM, one cannot determine the density and temperature

values uniquely from the experimental isotope yield ratios. In the present analysis, therefore,

the source density of ρ/ρ0 = 0.56, which has been determined from the experimentally

reconstructed primary hot isotope yields in the reaction system 64Zn+112 Sn in our previous

studies [26, 50] is adopted. For the given density of ρ/ρ0 = 0.56, the ∆µ/T values of the

primary fragments are calculated for different temperatures from T = 3 to T = 8 MeV and

compared with the experimentally extracted primary ∆µ/T values in Fig. 7. As plotted

in the figure, both QSM and experimentally extracted ∆µ/T values show rather consistent

decreasing trends as (Z/A)NN increases, and the experimental data points distribute between

the calculated ones for T = 4 and 5 MeV.

In order to extract an optimum temperature value from the experimental results, a least

squares analysis is performed by calculating χ2(T ), where χ2(T ) for a certain input T is

given by

χ2(T ) =
∑

i

[(∆µ/T )Exp,i − (∆µ/T )QSM,i(T )]
2

σ2
Exp.,i

. (10)

Here (∆µ/T )Exp,i and (∆µ/T )QSM,i(T ) are, respectively, the experimentally extracted and

the calculated ∆µ/T values for the ith system at a given temperature, and σExp.,i is the

corresponding uncertainties. The summation in Eq. (10) is taken over all 13 systems. The

resultant χ2(T ) values are shown in Fig. 8. From this figure, T = 4.6±0.4 MeV is determined

and assigned as the temperature at the fragment emission time. The error is from the

standard deviation from the fitted experimental curve. This result is consistent with that
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FIG. 7: (color online) The comparison between the ∆µ/T values from the calculations with different

temperature inputs from 3 ∼ 8 MeV and the experimentally extracted primary ones. The curves are the

results of polynomial fits to the calculated values for each given T value.

obtained in our previous work, T = 5.2 ± 0.6 MeV [26], which was extracted from the

reconstructed primary hot isotope yields using a self-consistent technique.

f. Density dependent symmetry energy

According to Refs. [1, 58], the differential chemical potential is given by,

∆µ = 2 ·
∂(E(T, ρ, δ)/A)

∂δ
. (11)

Here E(T, ρ, δ) is the total internal energy of the emitting source with N neutrons and

Z protons and δ = (N − Z)/(N + Z). One can calculate the total internal energy using a

similar equation to Eq. (6) and therefore the resultant ∆µ can be expressed as [74]

∆µ = 4δasym(T, ρ)− ac(ρ)A
2/3(1− δ).1 (12)

From the experiments, ∆µ can be calculated as ∆µ = T · (∆µ/T ) from the primary ∆µ/T

values and the NN-source temperature obtained above. One should note that ac(ρ) can not

1 In Ref. [1, 58], Eq. (12) is given without the Coulomb contribution.

15



 (MeV)inputT
2 4 6 8

2 χ

1

10

210

310

FIG. 8: (color online) The resultant χ2(T ) values as a function of the temperature. The line is the

polynomial fit of the data points.

be simply calculated as ac(ρ) = T · (ac(ρ)/T ) from Eq. (8), since the ac(ρ)/T value there

is extracted from the final products after the sequential decays, and does not represent the

ac(ρ)/T value of the primary NN source. Under the assumption of a uniform expansion,

the source radius is proportional to (ρ/ρ0)
−1/3. Thus ac(ρ) = ac(ρ0) · (ρ/ρ0)

1/3, where

ac(ρ0) = 0.67 MeV [58] is the Coulomb coefficient at the saturation density. In Ref. [26],

ac(ρ)/T = 0.126 is extracted from the experimentally reconstructed primary hot fragments

at T = 5.2 ± 0.6 MeV, which gives ac(ρ) = 0.126 · (5.2 ± 0.6) = 0.66 ± 0.08 MeV. This

value agrees within errors to that used here, that is, ac(ρ) = 0.67 ·0.561/3 = 0.55 MeV. After

converting Eq. (12), asym can be extracted as

asym =
∆µ+ ac(ρ0) · (ρ/ρ0)

1/3A2/3(1− δ)

4δ
. (13)

In the asym extraction, the expected value of the temperature T = 4.6 MeV is adopted;

A = ANN is calculated using Eq. (1); δ is calculated from (Z/A)NN using Eq. (2). For all 13

available systems, the extracted asym values are shown as a function of (Z/A)NN in Fig. 9.

Their distributions show no clear dependence on (Z/A)NN and asym = 23.6 ± 2.1 MeV is

obtained as an average value. The error is evaluated as the standard deviation from the

central value. One should note that this error and the error of the temperature are from

the spread of the experimental ∆µ/T values around the average ones in both cases and thus
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FIG. 9: (color online) The resultant asym values as a function of (Z/A)NN using Eq. (13). The line is the

constant fit of the data points.

the origins are the same. Therefore we take the error of the symmetry energy only from the

standard deviation from the average value in Fig. 9.

IV. IV. DISCUSSION

a. Symmetry energy extraction at Fermi energies

In the present analysis, the experimental ∆µ/T values extracted from IMF yield ratios,

are utilized to extract the temperature and symmetry energy of the fragmenting source in

the framework of QSM. The density value of ρ/ρ0 = 0.56 is taken from that in Ref. [26],

in which 64Zn +112 Sn reaction products were analyzed with a self-consistent method in the

framework of AMD model. In both analyses, the experimentally observed isotope yields from

the NN-source component are utilized in the MFM formulation. However both analyses are

quite different from each other. In the present analysis ∆µ/T values, which are directly

related to the symmetry energy asym in Eq. (13), are analyzed. They are extracted from

the 13 different reaction systems studied at 40 MeV/nucleon, whereas in the self-consistent

method, 5 parameters in Eq.(6) were consistently determined using all isotope yields from a

single reaction system of 64Zn+112Sn and the corresponding AMD simulations, using Gogny

interactions with three different density-dependent symmetry energy forms [26]. As seen in
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the formulation of MFM in APPENDIX, the density obtained from the IMF yield analysis

is closely related to the the density of IMFs when they are formed and therefore closely

related to the nuclear matter in a liquid phase. The extracted temperature T = 4.6 ± 0.4

MeV and symmetry energy asym = 23.6 ± 2.1 MeV in this analysis are common to all 13

reaction systems and consistent with values obtained using the self-consistent method in

Ref. [26], i.e., T = 5.2± 0.6 MeV and asym = 20.8± 0.6 MeV. As pointed out in Sec. III(a),

the NN-source size is around 40 to 90 mass units, as shown in Fig. 2, indicating that the

products from the NN source originate from the overlap region of the projectile and target

in this energy regime. That is, these particles are produced through a multifragmentation

process at a time of freezeout [24]. The extracted common symmetry energy shown in Fig. 9

for all 13 reactions, even though their system size and N/Z value are quite different, is a

strong indication that these fragments are produced in a common production mechanism as

mentioned earlier.

In Ref. [75], J. Xu et al. studied the temperature and density dependence of symmetry

energy and symmetry free energy within a self-consistent thermal model using an isospin and

momentum dependent interaction. According to their study, the temperature dependence

of these energies at a given density is rather small at T < 5 MeV, which suggests that the

symmetry energy value of asym = 23.6± 2.1 MeV is close to the symmetry energy value at

T = 0.

Strictly speaking the symmetry energy in Eq. (6) should be the symmetry free energy

according to the derivation in APPENDIX where the free energy is used. However as

discussed in Ref. [76], the calculated symmetry entropy relative to the temperature value,

Ssym/T , becomes gradually small when the density ρ increases at ρ = 0.2ρ0 toward the

normal nuclear density as shown in Fig.6 of Ref. [76], and at ρ = 0.56ρ0, Ssym/T ∼ 0.2.

Therefore the expected difference between the symmetry energy and the symmetry free

energy at T = 4.6 MeV and ρ ∼ 0.56ρ0 is an order of 1 MeV.

It is worth noting a recent work of A. Brown [77], in which the energy-density functional

of nuclear matter was studied using Skyrme interactions, evaluated under the constraints of

several experimental values of ground state doubly magic nuclei. According to the extracted

narrow bounded energy-density functional, the symmetry energy value of around 24.5 MeV

is obtained at ρ = 0.1fm−3 ∼ 0.65ρ0, which is very close to the values extracted in this

analysis. This energy-density point, as pointed out in his work, corresponds to a crossing
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point in the equation of state that is more or less independent of the neutron skin thickness.

b. Symmetry energy constraint at subsaturation densities

In another previous work [76], the density, temperature and symmetry energy of dilute

warm nuclear matter were experimentally extracted in collisions of 40Ar +112 Sn, 124Sn and

64Zn +112 Sn, 124Sn at 47 MeV/nucleon. In that analysis, yields and energy spectra of

early emitted light charged particles from the NN source were analyzed within a coalescence

model. The particle multiplicity of the NN source is dominated by these light particles and

the extracted density is the density around these light particles. Therefore the extracted

density is closely related to the gas phase of the nuclear matter during the collisions in

contrast to the results shown in the present analysis. In the coalescence model, the density

is closely related to the coalescence radius determined from the yield relationships between

the light particles. The extracted density is rather small in the range of ρ/ρ0 = 0.03 to 0.2,

indicating that the relative multiplicity of these light particles is governed by the final state

interaction between nucleons and clusters in a dilute warm nuclear matter. The temperature

values of ∼ 4 − 11 MeV were determined as a function of the surface velocity of the LCPs,

using the H-He double ratio thermometer as a function of the surface velocity of the LCPs.

The surface velocity is closely related to the emission time of the LPCs [78]. Symmetry free

energy values were extracted from the measured isoscaling parameter values, utilizing the

relation α = asym/T · [∆(Z/A)2]. Using the extracted parameters at a given surface velocity,

combined with the quantum statistical (QS) approach of Röpke et al. [79–82], symmetry

energy values were extracted. The corresponding symmetry energy values vary from ∼ 7

MeV to ∼ 11 MeV at the density range of ρ/ρ0 = 0.03 to 0.2.

In Fig. 10, the density dependent symmetry energy obtained in the above two experiments

and other experimentally extracted results from various observables are summarized. Details

about the cited experimental results are given in Table. I. All of data points cited are all

the results which are determined based on the nuclear reactions [26, 32, 59, 76, 83–88],

whereas the shaded area is that from the fit of the properties of the nuclei on the ground

and low-excited states [89].

In Fig. 10, two groups are clearly identified, which are at 0.1 <
∼ ρ/ρ0 ≤ 1.0 and ρ/ρ0 <∼ 0.1,

respectively. At 0.1 <
∼ ρ/ρ0 ≤ 1.0, the existing data points are consistent with each other
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FIG. 10: (color online) Summary of the density dependent symmetry energy obtained in the present and

previous studies. The line is the fit of the existing data points at 0.1 ≤ ρ/ρ0 ≤ 1.0 using Eq. (14).

within the errors and distribute along a line as a function of ρ/ρ0. This fact is in good

agreement with the prediction of the mean-field theory. Following the mean-field theory,

the density dependent symmetry energy are phenomenologically parameterized as a power

function,

asym(ρ/ρ0) = aρ=ρ0
sym · (ρ/ρ0)

γ, (14)

where aρ=ρ0
sym is the symmetry energy value at the saturation density, and γ is a parameter

for describing the ”stiffness” of the density dependent symmetry energy. This symmetry

energy formulation has been adopted in many statistical and transport models. As ”free”

parameters, aρ=ρ0
sym and γ can be extracted by performing the global fit of the existing data

points at 0.1 <
∼ ρ/ρ0 ≤ 1.0 using Eq. (14). This fitting result is shown by a blue line in
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TABLE I: Summary on the cited data from various independent studies.

Ref. Year Experimental measurement

Danielewicz et al. [89] 2014 Isobaric analog states, ∆Rnp

Lin et al. [59] 2014 Reconstructed isotopic yield

Khoa et al. [83] 2005 Elastic scattering, charge exchange

Kowalski et al. [84] 2007 LCP production

Wada et al. [76] 2012 LCP production

Roca-Maza et al. [85] 2013 Giant quadrupole resonance

Shetty et al. [86] 2004 Isoscaling

Shetty et al. [87] 2007 Isoscaling

Trippa et al. [32] 2008 Giant dipole resonance

Tsang et al. [88] 2009 Isospin diffusion, neutron-proton ratio

Liu et al. [26] 2015 Reconstructed isotopic yield

Fig. 10 and given by

asym(ρ/ρ0) = 31.6 · (ρ/ρ0)
0.69. (15)

At the saturation density, the slope parameter can be also calculated by the relation of

L = 3γaρ=ρ0
sym as L = 65.4 MeV. This constraint using the reaction-related observables is

compared with that proposed by Danielewicz et al. in Ref. [89] (shaded area), where a

combination constraint of isobaric analog states and neutron-proton skins was performed.

In their analysis, the symmetry energy coefficient was expressed as the sum of the volume

and surface contributions and their values were evaluated separately. For the net symmetry

energy, they set a constraint for asym and γ at the saturation density in aρ=ρ0
sym = 30.2 ∼ 33.7

MeV and γ = 0.36 ∼ 0.74, respectively, and the slope parameter was constrained as L =

35 ∼ 70 MeV. Both the constraints of our present work and of Danielewicz et al. suggest a

stiff, but softer than linear, form of symmetry energy at subsaturation densities.

At lower densities (ρ/ρ0 <
∼ 0.1), the experimentally extracted symmetry energy values

significantly deviate from the mean-field prediction as shown in Fig. 10. This significant

deviation has been attributed to the formation of clusters at low densities, well described

by the QS approach which includes cluster correlations in the medium [76, 90, 91]. Further
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investigations are urgently required for a better understanding of the clusterization mecha-

nism in low density matter, due to its critical applications in both nuclear and astrophysical

physics [91].

V. V. SUMMARY

Within the framework of MFM, values of ∆µ/T , the ratios of neutron-proton differen-

tial chemical potential values to the temperature, are experimentally extracted from isotope

yields of thirteen reaction systems at 40 MeV/nucleon. After evaluation of the secondary

decay effect on ∆µ/T with the help of SMM, the resultant primary ∆µ/T values are com-

pared to those from QSM simulations to determine the temperature and symmetry energy

values of the fragmenting system. Using the density value of ρ/ρ0 = 0.56 from a previ-

ous analysis [26], the temperature and symmetry energy values of T = 4.6 ± 0.4 MeV and

asym = 23.6 ± 2.1 MeV are extracted. These values agree well with those of the previous

work in Ref. [26], in which a different method was utilized. Following the mean-field the-

ory, the density dependent symmetry energies at 0.1 <
∼ ρ/ρ0 ≤ 1.0 are phenomenologically

parameterized as a power function, asym(ρ/ρ0) = 31.6 · (ρ/ρ0)
0.69, by performing a global

fit to the symmetry energy values obtained in the present work and those experimentally

extracted from other studies. At lower densities (ρ/ρ0 <∼ 0.1), the experimentally extracted

symmetry energy values significantly deviate from the mean-field prediction, and this fact

is attributed to the clusterization mechanism in a dilute warm nuclear matter.
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VII. APPENDIX. MODIFIED FISHER MODEL (MFM)

Free energy is formulized as two types,

F = U − TS (16)

F = H − TS (17)

Eq. (16) is the Helmholtz free energy which is obtain from a process under the condition

of a constant volume, whereas Eq. (17) is the Gibbs free energy from a process under the

condition of a constant pressure.

In the Fisher model [42], for a single constituent system, a spherical droplet from A

particles is formed in the gas phase with B particles through a phase transition and both

phases are derived from a parent source with mass A +B particles. The free energy of the

system in the initial and final phases can be written, respectively, as

Finital = µg(A+B)− TS. (18)

Ffinal = µlA+ µgB + 4πR2σA2/3 − T (S − τlnA). (19)

In Eqs. (18) and (19), µl and µg are, respectively, the chemical potentials of liquid and gas

phases, and S is the total entropy of the initial phases. τ is the critical exponent, and T

is the system temperature. The third term in Eq. (19) is the surface contribution for the

26



spherical droplet with radius R and surface tension parameter σ. σ near the critical point

can be expressed as a function of temperature as

σ(T, Tc) =





σ0(1 +
3T
2Tc

)(1− T
Tc
)3/2 (T < Tc)

0 (T ≥ Tc),
(20)

where Tc is the temperature at the critical point. The last term in Eq. (19) originates from

the entropy change of the system when the droplet is formed. The term τlnA is the entropy

change caused by the droplet, introduced by Fisher in his model [42]. The free energy of

the droplet can be given as the difference between Eqs. (18) and (19) as

Fdroplet =Ffinal − Finitial

=(µl − µg)A+ 4πR2σA2/3 + TτlnA.
(21)

In a canonical ensemble, free energy can be deduced as

−Fdroplet = T ln(Z), (22)

where Z is the partition function and it is proportional to the yield Y (A) of a given type of

droplets with A particles,

Y (A) ∝ Z = exp(−
Fdroplet

T
). (23)

Eq. (23) is the mathematical expression of Fisher model.

In order to apply the Fisher model to a nuclear multifragmentation process, two con-

stituents (neutrons and protons) and the characteristics of nuclear force have to be taken

into account in the model. In the framework of MFM, from the analogy to Eq. (21), the

free energy of a fragment with mass number A and I = N −Z (N neutrons and Z protons)

is expressed as

F (I, A) = (−W (I, A)− µnN − µpZ) + T (τlnA− Smix(N,Z)). (24)

Following to Ref. [44], utilizing the generalized Weizsäcker-Bethe semiclassical mass for-

mula [4, 5], W (I, A) is given as Eq. (6) in the text. Smix(N,Z) is called mixing entropy,

which originates from the change from a single constituent system to a two constituent sys-

tem. For classical particles, the total number of the micro-states, ΩM.B. can be expressed

as

ΩM.B. =
N0!

Πal!
Πωal

l !, (25)

27



where N0 is the particle number and al is the particle number at the l state, that N0 = Σal.

ωl is the degeneracy of the l state. Going to a nuclear system, ignoring the spin, nucleons

only have two ”states”, proton and neutron, defining as ”n” state and ”p” state here. The

degeneracies of two states are both 1. Therefore for a nuclei with Z protons (ap = Z) and

N neutrons (an = N), the total number of the micro-states becomes

ΩM.B.(N,Z) =
A!

N !Z!
. (26)

Thus Smix(N,Z) is simply calculated as

Smix(N,Z) =ln(A!)− ln(N ! · Z!)

=[A(lnA− 1) +
1

2
ln(2πA)]

− [N(lnN − 1) +
1

2
ln(2πN) + Z(lnZ − 1) +

1

2
ln(2πZ)]

≈A(lnA− 1)− [N(lnN − 1) + Z(lnZ − 1)]

=− [Nln(
N

A
) + Zln(

Z

A
)].

(27)

Combining Eqs. (6), (24) and (27), one can get

F (I, A) =(−ãv −
δ

2
∆µ)A+ asA

2/3

+ T [τlnA +Nln(
N

A
) + Zln(

Z

A
)]

+ ac
Z(Z − 1)

A1/3
+ asym

(N − Z)2

A
+ ap

δp
A1/2

,

(28)

where ãv = av +
1

2
(µn + µp), ∆µ = µn − µp and δ = (N − Z)/A. Comparing Eq. (21)

and (28), we can see the correspondence between a liquid-gas transition and a nuclear

multifragmentation process as

(µl − µg)A ⇐⇒ (−ãv −
δ

2
∆µ)A

4πR2σA2/3 ⇐⇒ asA
2/3

TτlnA ⇐⇒ T [τlnA +Nln(
N

A
) + Zln(

Z

A
)]

(29)

Other terms, such as Coulomb, symmetry and pairing terms, are added in Eq. (28) for the

nuclear matter application.
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