86 research outputs found

    Determining the verse of magnetic turbulent cascades in the Earth's magnetospheric cusp via transfer entropy analysis: preliminary results

    No full text
    International audienceThe inter-scale coupling in the dynamics of the magnetic field in the Earth's magnetospheric cusp is studied with the technique of transfer entropy. This is a non-linear data analysis technique conceived to determine which is the process that plays the role of the "dynamical driver" between two processes interacting. The time series of the magnetic field components measured along the trajectory of a spacecraft through the cusp are decomposed via continuous wavelets, so a time series of the square modulus of the wavelet coefficients may be associated to each scale ? considered. The coupling between to two nearby scales is studied, with the purpose of singling out turbulent cascade directions from large to small scales and viceversa. Preliminary physical conclusions are proposed

    Deferrable loads in an energy market: Coordination under congestion constraints

    Get PDF
    We consider a scenario where price-responsive energy consumers are allowed to optimize their individual utilities via mechanisms of load-shifting in a distribution network subject to capacity constraints. The uncoordinated selfish behavior of the consumers would lead, in general, to requests that could not be served by the distribution network because of such constraints. Thus, a centralized or hierarchically coordination mechanism is required. We derive algorithms and methods to determine in real-time the largest set of consumers' decisions that are compatible with the physical constraints of the network and capable of avoiding congestion phenomena in the future. These methods are shown to be applicable to the design of coordination mechanisms with the aim of providing a large number of degrees of freedom to the users while guaranteeing the integrity of the system.Charles Stark Draper Laboratory (URAD Project)Siemens CorporationNational Science Foundation (U.S.) (CPS-1135843

    Trust me, I am a social media manager! Public sector’s trust work and reputation in the age of misinformation

    Get PDF

    Anisotropic scaling features and complexity in magnetospheric-cusp: a case study

    Get PDF
    Magnetospheric cusps are high-latitude regions characterized by a highly turbulent plasma, playing a special role in the solar wind-magnetosphere interaction. Here, using POLAR satellite magnetic field vector measurements we investigate the anisotropic scaling features of the magnetic field fluctuations in the northern cusp region. Our results seem to support the hypothesis of a 2D-MHD turbulent scenario which is consequence of a strong background magnetic field. The observed turbulent fluctuations reveal a high degree of complexity, which might be due to the interplay of many competing scales. A discussion of our findings in connection with the complex scenario proposed by Chang et al. (2004) is provided

    The ISIS Project: Indications for Future Near-Earth Plasma Studies through Future Galileo Satellites

    Get PDF
    The Earth’s plasmasphere variability is a consequence of the Sun’s forcing, determining our planet’s space weather. Plasmaspheric dynamics could be entirely caught only by studying together global and local proxies of the state of this extended system. The ISIS project (Inter-Satellite & In Situ plasmaspheric monitoring and modelling) aimed to design a system for the continuous monitoring of the Earth’s plasmasphere based on the future Galileo satellites. The efforts and expertise of ISC-CNR (Institute for Complex Systems of the National Research Council of Italy), INGV (Istituto Nazionale di Geofisica e Vulcanologia) and TAS-I (Thales Alenia Space - Italy) were put together in this work of assessment. ISIS Team proposed new experimental facilities of the Galileo satellites, designed to realize inter-satellite and in situ measurements to monitor global and local quantities; in particular, a scalable system of Langmuir probes was suggested, while the TEC along all possible inter-satellite ray paths throughout the plasmasphere could be monitored via phase- and group-delay analysis of inter-satellite radio signals

    The ISIS Project: Indications for Future Near-Earth Plasma Studies through Future Galileo Satellites

    Get PDF
    The Earth’s plasmasphere variability is a consequence of the Sun’s forcing, determining our planet’s space weather. Plasmaspheric dynamics could be entirely caught only by studying together global and local proxies of the state of this extended system. The ISIS project (Inter-Satellite & In Situ plasmaspheric monitoring and modelling) aimed to design a system for the continuous monitoring of the Earth’s plasmasphere based on the future Galileo satellites. The efforts and expertise of ISC-CNR (Institute for Complex Systems of the National Research Council of Italy), INGV (Istituto Nazionale di Geofisica e Vulcanologia) and TAS-I (Thales Alenia Space - Italy) were put together in this work of assessment. ISIS Team proposed new experimental facilities of the Galileo satellites, designed to realize inter-satellite and in situ measurements to monitor global and local quantities; in particular, a scalable system of Langmuir probes was suggested, while the TEC along all possible inter-satellite ray paths throughout the plasmasphere could be monitored via phase- and group-delay analysis of inter-satellite radio signals.Published1A. Geomagnetismo e Paleomagnetismo2A. Fisica dell'alta atmosferaN/A or not JCRope

    The ISIS Project: Indications for Future Near-Earth Plasma Studies through Future Galileo Satellites

    Get PDF
    The Earth’s plasmasphere variability is a consequence of the Sun’s forcing, determining our planet’s space weather. Plasmaspheric dynamics could be entirely caught only by studying together global and local proxies of the state of this extended system. The ISIS project (Inter-Satellite & In Situ plasmaspheric monitoring and modelling) aimed to design a system for the continuous monitoring of the Earth’s plasmasphere based on the future Galileo satellites. The efforts and expertise of ISC-CNR (Institute for Complex Systems of the National Research Council of Italy), INGV (Istituto Nazionale di Geofisica e Vulcanologia) and TAS-I (Thales Alenia Space - Italy) were put together in this work of assessment. ISIS Team proposed new experimental facilities of the Galileo satellites, designed to realize inter-satellite and in situ measurements to monitor global and local quantities; in particular, a scalable system of Langmuir probes was suggested, while the TEC along all possible inter-satellite ray paths throughout the plasmasphere could be monitored via phase- and group-delay analysis of inter-satellite radio signals
    • …
    corecore