
Deferrable loads in an energy market:
coordination under congestion constraints

Donatello Materassi, Saverio Bolognani, Mardavij Roozbehani, Munther A. Dahleh

Abstract— We consider a scenario where price-responsive en-
ergy consumers are allowed to optimize their individual utilities
via mechanisms of load-shifting in a distribution network sub-
ject to capacity constraints. The uncoordinated selfish behavior
of the consumers would lead, in general, to requests that could
not be served by the distribution network because of such
constraints. Thus, a centralized or hierarchically coordination
mechanism is required. We derive algorithms and methods to
determine in real-time the largest set of consumers’ decisions
that are compatible with the physical constraints of the network
and capable of avoiding congestion phenomena in the future.

These methods are shown to be applicable to the design of
coordination mechanisms with the aim of providing a large
number of degrees of freedom to the users while guaranteeing
the integrity of the system.

I. INTRODUCTION

The introduction of mechanisms of price-response in the
power grid is expected to happen via the design, implemen-
tation, and deployment, of a large number of individual deci-
sion makers corresponding to different participants in the en-
ergy market, each one optimizing its own independent utility
function [1], [2], [3], [4]. The behavior of the individual user
necessarily depends on its specific utility of consumption,
which, typically, is not just a static function of the delivered
electric power. Indeed, in many noticeable cases – Electric
vehicles (EV), thermostatic loads, heating, ventilation, and
air conditioning (HVAC) systems, manifacturing processes,
and residential loads – the user utility is described by quite
complex individual models that might include the possibility
of deferring the load, a penalty for postponing consumption
and soft or hard deadlines.

Current power grids are managed under the assumptions
that energy consumption is relatively predictable in aggregate
and that user demand is substantially inelastic [5]. The
introduction of a large number of price-responsive loads will
challenge these assumptions and potentially affect how grids
will need to be managed in many fundamental aspects.

The impact of uncoordinated response of flexible loads to a
price signal has been analyzed, for example in [6], [7], [8]. In
particular, [8] studies the effect of a widespread adoption of
Electric Vehicles (EVs) on a large scale, while [7] considers
the impact of EVs in terms of power losses at the level

The authors are with the Laboratory for Information and Decision Sys-
tems, Massachusetts Institute of Technology, Cambridge MA 02139, USA.
{donnie13, saverio, mardavij, dahleh}@mit.edu

The research leading to these results has received support from Draper
Laboratories (URAD project), Siemens AG, and National Science Founda-
tion (CPS-1135843).

A condensed version of this paper has been presented at the 22nd
Mediterranean Conference on Control & Automation (MED14) in Palermo,
Italy, on June 16-19, 2014.

of the distribution network. These studies suggest that, in
order to guarantee the reliability of the grid, individual users
cannot be allowed to participate freely in the retail energy
market, and some level of supervision is needed. This is the
main focus of this article, where we enlarge the problem
perspective from the determination of optimal consumption
policies of a single energy user, e.g. [9], to the scenario where
multiple energy users need to be coordinated to meet the
physical constraints imposed by the system.

In particular, we consider a specific class of congestion
phenomena in the power network, consisting in overstepping
capacity limits on the maximum aggregate power that can be
delivered to a pool of users at the same time. Indeed, there are
many practical scenarios where the operational constraints
have this form - for example large fleet of electric vehicles
connected to the same charging station, where each vehicle
has to satisfy its energy demand (full battery charge) within
some firm deadline. It is also reasonable to expect that the
limit on the maximum power at the distribution substation
would correspond to constraints of the same type.

This type of constraints have already been analyzed in
[10], for example, where however no stochastic prices are
considered. Heuristic scheduling strategies have been pro-
posed in [11], in order to schedule deferrable loads in a
energy market, for better exploitation of renewable sources
and of reserve capacity. A decentralized protocol for day-
ahead load scheduling has been proposed in [12], aiming
at flat aggregate consumption profiles, while both [13] and
[14] consider the issue of power losses minimization in their
centralized load control. In all these examples, loads are
dispatched by a (possibly distributed) scheduler, to which the
user have to reveal information about their utility function.
Our formulation, instead, intends to provide a framework
where individual policies of the users in response to stochas-
tic energy prices can be incorporated seamlessly, so that
the aggregator has to guarantee only the satisfaction of
operational constraints of the grid, while users are allowed
to participate to the market according to their own strategy
and interests, without even disclosing them.

We can use a simple example to describe the mecha-
nism that make congestion to arise when different users
are allowed to pursue their own individual utility with no
supervision. Consider the problem of charging two identical
batteries, B(1) and B(2). Assume that each battery requires a
total of E(1) = E(2) = 2 units of energy by the time T = 4.
At each time k = 0, 1, 2, 3,, the i-th battery can be charged
by u(i)k ≥ 0 units of energy with a maximum rate of u(i) = 1
per time unit, for i = 1, 2. In other terms, we have that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78065177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B(1)

B(2)

2 2 0 0

k 210 3

u
(1)
k + u

(2)
k

B(1)

B(2)

20

k

0 2

210 3

u
(1)
k + u

(2)
k

(a) (b)
Fig. 1. Example of uncoordinated response of two batteries in a regime
of dynamic-pricing. In (a) we see the response associated to to low energy
prices for k = 0, 1: both batteries decide to consume. In (b) we see the
response to low prices for k = 0, 1: both batteries postpone consumption,
activating too late when they cannot consume at the same time.

0 ≤ u
(i)
k ≤ u(i) for k = 0, 1, 2, 3 and i = 1, 2. In addition,

assume that the two batteries are subject to the capacity
constraint U of their charging station: u(1)k + u

(2)
k ≤ U = 1

for k = 0, 1, 2, 3 and, being identical, are going to follow
the same decision strategy - for example the optimal cost-
minimizing strategy proposed in [9].

According to such a strategy, in the case of a “low” energy
price during the time intervals k = 0, 1 (see Figure 1a) both
users would decide to consume at their maximum rate, over-
stepping the global constraint given by u(1)k +u

(2)
k ≤ U = 1.

Via simple contention mechanisms, it might be possible to
split the total rate U fairly between the two batteries, so
that both users would have their demand satisfied by their
deadlines. However, a more complex case of congestion
happens in the case of “high” prices during the time intervals
k = 0, 1 (see Figure 1b). In this case both batteries would
postpone their consumption, expecting lower prices in the
future. However, as soon as they both decide not to consume
at some time k, they end up in a condition where their
demands can not be satisfied any more within their deadlines.

Such congestion scenarios are not only possible, but also
likely to appear, if the users react to the same price signal
and therefore tend to have correlated behaviors.

Our results suggest that a possible architecture capable of
avoiding congestion phenomena consists of an aggregator
that has the duty of collecting bids from the individual
batteries and clearing a auction. “Aggregators” that guarantee
the correct behavior of the power grid have already been
proposed (see [6] and [8] and references therein). However,
the functions of these entities are often described in a
qualitative way, without providing a formal characterization
of what their behavior or their implementation should be.

Our main contribution is to precisely characterize the
acceptable decisions from the the users that guarantee a
feasible consumption and the satisfaction at the specified
deadlines, without jeopardizing the schedulability of the
charging problem in the future consumption horizon. In
particular, we show that, the space of admissible consump-
tion patterns can be algorithmically computed, and has the
structure of a Partially Ordered set (POset). Such structure
can be incorporated in the energy auction, in the form of a
“constrained multi-object auctions” similar to those that have
been studied in [15], [16], [17].

The paper has the following structure. We first provide
a mathematical formulation of the problem (Section II),
describe the solution in the simplified scenario in which
all users have the same deadline (Section III), and then
we extend the solution to the general case (Section IV). In
Section V we illustrate one possible way to use the proposed
methodology in the design of a constrained auction for the
energy market.

II. PROBLEM FORMULATION

Each deferrable load (e.g. battery) is modeled as a task,
defined as follows.1

Definition 1 (Task): A task is a 3-tuple (E, T, u) ∈ R3

where E > 0 defines the demand, T is the deadline, i.e. the
time left to satisfy such demand, and u > 0 is the maximum
rate at which the task can be served.
In line with many practical applications, and with minimal
loss of generality, we introduce a discretization of time and
of the parameters that define the tasks. We assume a unitary
sampling time and introduce the following definition.

Definition 2 (Integer task): A task (E, T, u) is integer if
T ∈ N and if E

u ∈ N.
We can therefore introduce the following discrete time model
to describe the dynamic process of task completion (or
battery charging)

xk+1 = xk + uk

x0 = −E

where xk ≤ 0 is the state of completion of the task (the
state of charge), and uk ≥ 0 is the rate at which the task
is served (in a piece-wise constant way) during the k-th
interval, namely between time k and k + 1.

The constraint on the maximum rate, and the deadline for
task completion, corresponds respectively to the inequalities

0 ≤ uk ≤ u, for k = 0, . . . , T − 1,

and the equality
xT = 0.

We now consider the case of multiple users, whose behav-
iors are coupled by the fact that, at any time, the aggregate
service rate (the sum of the rates at which different tasks are
served) cannot exceed a given limit U .

We therefore consider N tasks (E(i), T (i), u(i)), where
i = 1, ..., N , and we consider the following problem.

Definition 3 (Task scheduling problem): We define the
task scheduling problem as the problem of deciding the
variables u(i)k for k = 0, ..., T := max1≤i≤N T (i) such that
for any task i

x
(i)
k+1 = x

(i)
k + u

(i)
k

x
(i)
0 = −E(i)

x
(i)

T (i) = 0

(1)

1The generality of the terminology introduced in this section indicates
how the same model can effectively describe other equivalent scenarios,
e.g. real-time scheduling in multiprocessor machines [18].

where x(i)k ≤ 0 is the state of task i at time k, and such that,
at any time k,

0 ≤ u(i)k ≤ u
(i) for i = 1, ..., N

N∑

i=1

u
(i)
k ≤ U.

(2)

We refer to T as the horizon of the problem.
We introduce the following definitions.
Definition 4 (Action): We define the action uk at time k

as the vector in RN obtained by stacking the rates u(i)k of
the different tasks.

Definition 5 (Feasible schedule): Given the tasks
(E(i), T (i), u(i)) for i = 1, ..., N , and an aggregate
limit U , a schedule (i.e. a series of actions) {uk}T−1k=0 is
feasible if it solves the task scheduling problem, i.e. it
satisfies the constraints (1) and (2).

Definition 6 (Schedulable tasks): Given an aggregate
limit U , the tasks (E(i), T (i), u(i)) for i = 1, ..., N , are
schedulable if a feasible schedule for the corresponding task
scheduling problem exists.

As explained in the introduction, the goal of the analysis
presented in this paper is to give necessary and sufficient
conditions so that the actions of the users meet the constraints
of the task scheduling problem, and do not compromise the
possibility of generating a feasible schedule in the future,
given the current state of completion of the tasks.

Our analysis is performed at time k = 0 and provides
guarantees that, if the tasks are schedulable to begin with,
then a certain action u0 leaves the tasks in a schedulable
configuration over the horizon [1,max1≤i≤N T (i)]. Then, the
same approach can be iteratively applied.

An effective characterization of the set of all (and only) the
admissible actions allows to derive coordination strategies
among the users, possibly in the form of an aggregator, as
explained in the Introduction.

We therefore introduce the following formal definitions.
Definition 7 (Admissible action): Given the tasks

(E(i), T (i), u(i)) for i = 1, ..., N , and an aggregate
limit U , an action

u0 =



u
(1)
0

...
u
(N)
0




is admissible if:
• it satisfies

0 ≤ u(i)0 ≤ u(i), i = 1, . . . , N, and
N∑

i=1

u
(i)
0 ≤ U,

• the tasks (E(i)−u(i)0 , T (i)−1, u(i)) are schedulable with
the global constraint U .

We define by U0 the set of all admissible actions.
We now make a technical assumption, with minimal loss

of generality.
Assumption 8: The tasks (E(i), T (i), u(i)), i = 1, ..., N ,

are all integer tasks. Moreover, there exist a common u, that

we denote as the unit rate, such that

E(i)

u
∈ N,

u(i)

u
∈ N,

U

u
∈ N,

for all i = 1, ..., N .
Based on this, we introduce the following definition.
Definition 9 (Integer schedule): Given a task scheduling

problem, a schedule is integer if all its elements are integer
multiples of a unit rate u.

In the following, we will focus only on integer schedules.
This choice is reasonable in the common practice, where
most of the time tasks can be served at some quantized rate of
service (i.e. according to the number of processors assigned
to the thread in a multiprocessor system [18], or according
to some of the EV battery charging standards where different
levels of charging speed are available).

It is worth remarking that, even if the problem of finding
a solution to the scheduling problem (1)-(2) becomes easier
if the integer constraints are relaxed (and reduces to the
application of linear programming to load scheduling [19],
[20]), a practical characterization of all the feasible actions
remains a difficult problem. On the other hand, the following
result shows that the restriction to integer schedules has no
effect on the schedulability analysis of the task scheduling
problem.

Theorem 10: Consider a set of N tasks (E(i), T (i), u(i)),
with an aggregate bound U , and let Assumption 8 hold. The
tasks are schedulable if and only if an integer schedule exists.

Proof: See the appendix.
The following proposition shows that if Assumption 8

holds, there is no loss of generality by assuming that all
tasks have the same rate constraint u(i) = 1.

Proposition 11: Consider a task scheduling problem de-
fined by the tasks (E(i), T (i), u(i)) for i = 1, ..., N , and let
Assumption 8 hold. It is possible to define an equivalent task
scheduling problem in the form

χ
(i,j)
k+1 = χ

(i,j)
k + v

(i,j)
k

χ
(i,j)
0 = −E(i,j)

χ
(i,j)

τ(i,j) = 0

0 ≤ v(i,j)k ≤ 1

N∑

i=1

ρ(i)∑

j=1

v
(i,j)
k ≤ V ,

where

• the decision variables are v(i,j)k ,
• ρ(i) = u(i)/u,
• V = U/u,
• the tasks are defined as

(
E(i,j) = E(i)

u(i)
, τ (i,j) = T (i), 1

)

for i = 1, ..., N and j = 1, ..., ρ(i). Such task scheduling
problem satisfies Assumption 8 with u = 1. The decision

variables of the original problem can then be recovered via

u
(i)
k = u

ρ(i)∑

j=1

v
(i,j)
k . (3)

Proof: The proof is by inspection.
Based on this result, in the rest of the paper we will

consider tasks with identical maximum rate equal to 1, unless
otherwise specified. Therefore, the choice of considering
only integer schedules corresponds, via (3), to having sched-
ules with binary decision variables, i.e.

u
(i)
k ∈ {0, 1}, for k =, ..., T − 1; i = 1, ..., N.

Definition 12 (Aggregate service rate): Given an action
u0, we indicate the aggregate service rate as

‖u0‖1 =

N∑

i=1

u
(i)
0 . (4)

We also borrow the notion of slack from the area of multi-
processor scheduling [18].

Definition 13 (Slack): We define the slack of a task as

s(i) := T (i) − E(i) (5)
The slack represents the maximum idle time that the task

can wait, before having to be served, in order to meet its
deadline (remember that u(i) = 1). Based on this definition,
we introduce a function of the action u0 that returns the
slacks of the tasks that are served according to that action:

s : {0, 1}N → N‖u0‖1

s(u0) =
[
s(i)
]
i:u

(i)
0 =1

.
(6)

As an example, in the case of an action serving tasks 2
and 3 among 5 tasks, we have that

s

([
0
1
1
0
0

])
=

[
s(2)

s(3)

]
.

It is possible to define a partial ordering relation between
these vectors via the following definition.

Definition 14 (Slack partial ordering): Let s′ and s′′ be
two vectors of the dimensions d′ and d′′, respectively. We
say that

s′ 4 s′′

if d′ ≥ d′′ and the sorted permutation of the d′′ smallest
elements of s′ is element-wise smaller than the sorted
permutation of s′′.

As an example, we have that [12] 4 [35], and also
[
1
2
8

]
4

[35], while [14] and [23] are not comparable, and neither
[
1
4
8

]

and [23] are.

III. CHARACTERIZATION OF ADMISSIBLE POLICIES
(HOMOGENEOUS DEADLINES)

In this section we consider the case where all the tasks
have the same deadline, namely T (i) = T , for i = 1, ..., N .
The following result characterize the schedulability of a set
of tasks, for generic maximum rates u(i).

Lemma 15: Consider a set of N tasks (E(i), T, u(i)),
for i = 1, ..., N , sharing the same deadline T , and let
Assumption 8 hold. The tasks are schedulable if and only
if the two following conditions are met

N∑

i=1

E(i)

U
≤ T, max

1≤i≤N
E(i)

u(i)
≤ T. (7)

Proof: See the Appendix.
The characterization of schedulability proposed in

Lemma 15 is the key tool that allows to give a complete
characterization of the set U0 of admissible decision.

We can therefore state the main result for the case of
homogeneous deadlines.

Theorem 16: Consider a set of N schedulable tasks
(E(i), T, 1), for i = 1, ..., N , sharing the same deadline T ,
and let Assumption 8 hold. Then the set of admissible integer
decisions at time 0 is

U0 =

U⋃

y=max{U,z}
{u0 : ‖u0‖1 = y and s(u0) 4 0z} ,

where z is the number of tasks with slack zero

z = |{i : s(i) = 0}|,

the symbol 0z indicates a vector of size z in which all
elements are 0, and U is defined as

U =

N∑

i=1

E(i) − (T − 1)U. (8)

Proof: See the Appendix.
Notice that the characterization of the set of admissible

decisions U0 can be translated in the two following necessary
and sufficient conditions:
• the aggregate service rate ‖u0‖1 of all the tasks cannot

be smaller than U , as defined in (8);
• tasks with slack s(i) equal to zero must be served.

A. The two-battery problem revisited

Let us consider again the problem of charging two inden-
tical batteries that was presented in the introduction and let
us analyze it in light of the results obtained in this section.
We can formalize it as a task scheduling problem where
(E(1), T (1), u(1)) = (E(2), T (1), u(1)) = (2, 4, 1) with an
aggregate limit U = 1. From Equation (8), we can compute
U = 1, while from Equation (5) we can compute s(1) =
s(2) = 2. As both the slacks are greater than zero, from
Theorem 16 we know that any decision such that ‖u0‖1 = 1
is admissible, and thus

U0 := {(1, 0)T , (0, 1)T }.

In other words, at least one of the two batteries has to
consume at k = 0, otherwise feasibility of the problem will
be irreversibly lost at k = 1. We showed in the Introduction
how, in the case of a high price at time k = 0, neither of the
two batteries would consume if they are following a selfish
optimal strategy for cost minimization. Our result suggests

that the existence of an Aggregator monitoring the situation
and implementing, for example, a constrained multi-object
auction to assign a minimal amount of energy when needed,
is a viable solution to the congestion problem.

IV. CHARACTERIZATION OF ADMISSIBLE POLICIES
(HETEROGENEOUS DEADLINES)

In this section, we study the set U0 of admissible decisions
in the case of batteries with different deadlines.

We first present an algorithm which allows to test the
schedulability of a given set of tasks.

Minimum Effort Algorithm
INPUT
• tasks: (E(i), T (i), 1), i = 1, ..., N
• aggregate limit: U

EXECUTE
1) INITIALIZE

• T := max1≤i≤N T (i)

• u(i)k = 0 for 0 ≤ k < T , 1 ≤ i ≤ N
2) FOR k = T − 1 : −1 : 0

• Create ActiveTasks:= list of all tasks with dead-
line T (i) > k and demand E(i) > 0

• Compute NA := # of elements in ActiveTasks
• Order ActiveTasks according to their reverse slack
r(i) := k + 1− E(i)

• For the first min(NA, U) tasks with least reverse
slack r(i) in ActiveTasks, decrease E(i) by 1 and
assign u(i)k := 1

OUTPUT:
• schedulability: if E(i) = 0 for all i = 1, ..., N

return TRUE otherwise return FALSE
• schedule: u(i)k = 0 for 0 ≤ k < T , 1 ≤ i ≤ N
• effort: U :=

∑N
i=1 u

(i)
0

The algorithm is clearly polynomial in the number of tasks
and in the length of the time horizon (the longest deadline).
An example of application of the Minimum Effort Algorithm
is presented in Figure 2 for the completion of 7 tasks with
heterogeneous deadlines.

The following result shows how the proposed Minimum
Effort Algorithm is effective in finding a feasible schedule,
if such a schedule exists.

Theorem 17: Consider the tasks (E(i), T (i), 1) for i =
1, ..., N , together with the aggregate constraint U , and let
Assumption 8 hold. The tasks are schedulable if and only if
the Minimum Effort Algorithm returns TRUE. Also, if the
tasks are schedulable the Minimum Effort Algorithm returns
a feasible integer schedule.

Proof: See the Appendix.
The scheduling generated by the algorithm exhibit one

specific property that will be useful in the characterization
of the set U0 of admissible decisions, and gives the name to
the algorithm.

Lemma 18: Consider the tasks (E(i), T (i), 1) for i =
1, ..., N , together with the aggregate constraint U , and let

Assumption 8 hold. Let U be the effort computed by the
Minimum Effort Algorithm applied to such task scheduling
problem. Then for any integer admissible decision u0 ∈ U0,
we necessarily have that

‖u0‖1 ≥ U.
Proof: See the Appendix.

Lemma 18 states that the Minimum Effort Algorithm
returns a lower bound U on the aggregate consumption that
must happen at time 0, in order to maintain schedulability of
the problem at the next time step. Also, the Minimum Effort
Algorithm guarantees the existence of a feasible schedule
with aggregate consumption exactly equal to U at time k =
0. However, an aggregate consumption larger or equal to U at
time k = 0 is not a sufficient condition. Indeed, consider for
example the task scheduling problem represented in Figure 2.
The Minimum Effort Algorithm returned U = 3, therefore
via Lemma 18 we know that the aggregate consumption
at time 0 must be at least 3, for any feasible scheduling.
However, one can easily check that the decision of serving
tasks B(1), B(4), and B(7) is not admissible: in fact, the
system was scheduled to work at full aggregate rate U up
to time k = 4, and therefore there is no way to serve task
B(7) at time 0, as there is no other task that can be served
at time 5 or later.

Conversely, it is also clear that the decision computed by
the algorithm is not the only admissible one. In the same
example, it is easy to check that the decision of serving tasks
B(1), B(3), and B(6) is also admissible.

The following result clarifies what is the mathematical
structure of the set U0 of admissible decisions, via the partial
ordering relation introduced in Section II.

Theorem 19: Consider the tasks (E(i), T (i), 1) for i =
1, ..., N , together with the aggregate constraint U , and let
Assumption 8 hold. Let u0 be an admissible decision. Then
any decision v0 is also admissible if

‖v0‖1 ≤ U and s(v0) 4 s(u0).
Proof: See the Appendix.

In other words, Theorem 19 states that if a decision is
admissible, then a decision smaller in slack, in the sense
provided by the relation “4”, is also admissible.

The characterization given by Theorem 19 is exemplified
in Figure 3. It represents the lattice of all possible choices
of U tasks to be served among the set of 7 tasks already
described in Figure 2. The label for each node represents the
slacks associated with the tasks that are served. The Hasse
diagram [21] highlights the POset structure defined by the
relation “4”. In red (and on the right of the same figure) we
have reported all the admissible decisions, illustrating the
relation of partial ordering described by Theorem 19.

V. EXAMPLE: AN AUCTION WITH MINIMUM-EFFORT
LEAST-SLACK CONSTRAINTS

The analysis in Section IV poses a lower bound on the
aggregate service rate ‖u0‖1 of the admissible decisions, and
shows that the set U0. has a poset structure. In the scenario
that motivated this study, at every time the Aggregator has to

Battery B(1) B(2) B(3) B(4) B(5) B(6) B(7)

Demand E(i) 3 2 4 3 1 5 1

Deadline T (i) 3 3 5 5 5 8 8

Slack s(i) 0 1 1 2 4 3 7

U = 3

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

N∑

i=1

u
(i)
k 3 3 3 3 3 21 1

k 210 3 4 5 6 7

E=1

r=7

E=5

r=3

NA=2

E=4

r=3

E=0

E=3

r=3

E=2

r=3

E=1

r=4

E=3

r=2

E=4

r=1

NA=1NA=1

NA=4

r=3

r=2

r=1

E=3

E=1

r=3

E=1

E=2

NA=4

E=2

r=1

E=1

r=2

E=0

E=1

r=2

E=2

E=3

r=0

r=1

NA=5

E=2

r=0

r=1

r=1

E=1

E=1

E=1

r=1

E=1

r=1

NA=5

E=1

E=0

r=0

E=1

r=0

E=1

r=0

NA=3

E=0

Fig. 2. A set of 7 integer tasks with heterogeneous deadlines and the
schedule computed by the Minimum Effort Algorithm. The aggregate bound
is U = 3. A gray box indicates that at a certain time k the task i is served
(u(i)

k = 1) while a white box indicates that the task is idle (u(i)
k = 0). Each

box also contains the numerical values of E(i) and of the reverse slack r(i)

as computed by the Minimum Effort Algorithm during its execution. As all
the demands are served (E(i) = 0 for all tasks after the iteration at time
k = 0), the problem is schedulable. The aggregate rate at time k = 0
represents the minimum effort (U = 3).

guarantee that the action u0 of the users belongs to U0. We
propose here an example of one possible and very practical
way to enforce such constraint, which we denote Minimum-
effort Least-slack (MELS) policy, and which is based on the
following result.

Corollary 20: Let U be the minimal aggregate consump-
tion as returned by the Minimum Effort Algorithm. Let
i1, . . . , iU be the U tasks with the smallest slacks (resolving
ties arbitrarily). Then any decision u0 in

UMELS
0 =

{
u0 : ‖u0‖1 ≤ U and u(i)0 = 1 for i = i1, . . . , iU

}

is admissible, being UMELS
0 ⊆ U0.

Proof: See the Appendix.
The proposed MELS policy consists in a regulated energy

market described by the following steps.
1) In order to participate to the market, users declare their

deadline and demand.
2) User are allowed to join only if their demand is

feasible. Such test can be performed via the Minimum
Effort Algorithm, and once a load is admitted, the
aggregator guarantees that its demand will be served
(in a form of commitment similar to the one in [22]).

3) At every time step, all users declare a bid, i.e. the price
that they are willing to pay in order to consume at full

011

012

013

014

017

027

037

047

034

024

023

112

113

114

117

127

137

147

134

124

123

234

237

247

347Poset of all possible
choices of U = 3 tasks

Poset of all admissible
choices of U = 3 tasks

least slack

011

012

013

014

024

023

Fig. 3. The Hasse diagram on the left represents the poset structure of all
possible way of choosing U batteries that consume (at full rate) at time 0.
The ordering relation describes the fact that if two decisions x, y satisfy
x 4 y (and therefore a directed path goes from x to y in the diagram)
then x is guaranteed to be an admissible decision if y is admissible. For
this specific example, [024] is the maximal element (the admissible decision
with the largest slack), and all and only the decisions with smaller slack are
admissible. The diagram on the right represents the subset of all admissible
decisions. Clearly, as an admissible decision exists, the decision with the
least slack is always admissible.

rate, for the next time interval, according to their own
selfish optimization policy (like for example the one
derived in [9]).

4) Based on these date, an aggregator computes the lower
bound U via the Minimum Effort Algorithm.

5) The aggregator clears a constrained multi-object auc-
tion with the following constraints:
• the U loads with the least slack must be served;
• no more than U loads are served, in total.

This example shows how a precise characterization of the
set of admissible decisions allows the users to participate in
the energy market with their specific, selfish, and possibly
undisclosed, policy (i.e. via their bids), while ensuring that
operational constraints and deadlines are satisfied.

VI. CONCLUSIONS

In an energy market with dynamic pricing, consumers can
optimize their individual utilities adopting several mecha-
nisms among which load-shifting is one of most effective
ones. However, the response of a large number of uncoor-
dinated price-responsive consumers might lead to local or
global congestion of the power distribution system.

The goal of this paper is to suggest a possible methodology
to enable a large number of price-responsive consumers to
participate to the market without compromising the reliability
of the network. This methodology is based on the computa-
tion of the set of admissible actions that are guaranteed to
preserve the integrity of the system. It is shown that this set
admits a precise mathematical characterization defined by a
relation of partial ordering. This set of admissible actions
can be used along with a constrained multi-object auction
mechanism to establish a verified decision protocol providing

both the efficiency of a distributed dynamic pricing system
and the reliability of a centralized approach.

REFERENCES

[1] A. Papavasiliou and S. Oren, “Supplying renewable energy to de-
ferrable loads: Algorithms and economic analysis,” in Power and
Energy Society General Meeting, 2010 IEEE. IEEE, 2010, pp. 1–8.

[2] K. Afridi, A. M. Farid, J. M. Grochow, W. W. Hogan, H. D. Jacoby,
J. L. Kirtley, H. G. Michaels, I. Perez-Arriaga, D. J. Perreault, N. L.
Rose, and G. L. Wilson, The Future of the Electric Grid. MIT Press,
2011.

[3] D. Caves, K. Eakin, and A. Faruqui, “Mitigating price spikes in
wholesale markets through market-based pricing in retail markets,”
The Electricity Journal, vol. 13, no. 3, pp. 13–23, 2000.

[4] D. Kirschen, “Demand-side view of electricity markets,” Power Sys-
tems, IEEE Transactions on, vol. 18, no. 2, pp. 520–527, 2003.

[5] P. P. Varaiya, F. F. Wu, and J. W. Bialek, “Smart operation of smart
grid: Risk-limiting dispatch,” Proceedings of the IEEE, vol. 99, no. 1,
pp. 40–57, 2011.

[6] M. Caramanis and J. M. Foster, “Management of electric vehicle
charging to mitigate renewable generation intermittency and distribu-
tion network congestion,” in Proceedings of the 48th IEEE Conference
on Decision and Control, Dec. 2009, pp. 4717–4722.

[7] K. Clement-Nyns, E. Haesen, and J. Driesen, “The impact of charging
plug-in hybrid electric vehicles on a residential distribution grid,” IEEE
Trans. on Power Systems, vol. 25, no. 1, pp. 371–380, 2010.

[8] J. A. P. Lopes, F. J. Soares, and P. M. R. Almeida, “Integration of
electric vehicles in the electric power system,” Proceedings of the
IEEE, vol. 99, no. 1, pp. 168–183, 2011.

[9] D. Materassi, S. Bolognani, M. Roozbehani, and M. Dahleh, “De-
ferrable loads in an energy market: optimal consumption policy,” in
Proc. of the American Control Conference, 2014.

[10] O. Sundström and C. Binding, “Flexible charging optimization for
electric vehicles considering distribution grid constraints,” IEEE Trans-
actions on Smart Grid, vol. 3, no. 1, pp. 26–37, Mar. 2012.

[11] A. Subramanian, M. Garcia, A. Dominiguez-Garcia, D. Callaway,
K. Poolla, and P. Varaiya, “Real-time scheduling of deferrable electric
loads,” in Proc. of the American Control Conference, 2012.

[12] L. Gan, U. Topcu, and S. H. Low, “Optimal decentralized protocol
for electric vehicle charging,” IEEE Transactions on Power Sytems,
vol. 28, no. 2, pp. 940–951, May 2013.

[13] E. Sortomme, M. M. Hindi, S. D. J. MacPherson, and S. S. Venkata,
“Coordinated charging of plug-in hybrid electric vehicles to minimize
distribution system losses,” IEEE Transactions on Smart Grid, vol. 2,
no. 1, pp. 198–205, Mar. 2011.

[14] K. Clement, E. Haesen, and J. Driesen, “Coordinated charging of
multiple plug-in hybrid electric vehicles in residential distribution
grids,” in Proc. of the Power Systems Conference and Exposition, 2009.

[15] M. Penn and M. Tennenholtz, “Constrained multi-object auctions and
b-matching,” Inform. Process. Letters, vol. 75, no. 1, pp. 29–34, 2000.

[16] M. Armstrong, “Optimal multi-object auctions,” The Review of Eco-
nomic Studies, vol. 67, no. 3, pp. 455–481, 2000.

[17] V. Krishna, Auction theory. Academic press, 2009.
[18] M. Pinedo, Scheduling: theory, algorithms, and systems. Springer,

2012.
[19] J. Chen, F. N. Lee, A. M. Breipohl, and R. Adapa, “Scheduling direct

load control to minimize system opoperation cost,” IEEE Transactions
on Power Systems, vol. 10, no. 4, pp. 1994–2001, Nov. 1995.

[20] K.-H. Ng and G. B. Sheble, “Direct load control - a profit-based load
management using linear programming,” IEEE Transactions on Power
Systems, vol. 13, no. 2, pp. 688–695, May 1998.

[21] R. Brèuggemann and G. P. Patil, Ranking and Prioritization for
Multi-indicator Systems: Introduction to Partial Order Applications.
Springer, 2011, vol. 5.

[22] S. Chen, L. Tong, and T. He, “Optimal deadline scheduling with com-
mitment,” in Proc. of the 49h Annual Allerton Conf. on Communication
Control and Computing, 2011.

APPENDIX

PROOF OF THEOREM 10

If an integer schedule exists, then the task scheduling
problem is trivially scheduling. The converse implication is

a direct result of Theorem 17, which states that the proposed
Minimum Effort Algorithmreturns an integer schedule, if the
problem is schedulable.

PROOF OF THEOREM 15

The two conditions are obviously necessary. We will
prove that the two conditions are sufficient by induction
on the scheduling horizon T . When T = 1 the assertion
is trivial. Now, assume that the two conditions guarantee
schedulability for a set of tasks with common deadline T−1.
Using Proposition 11, let us assume, without any loss of
generality, that u(i) = 1, for i = 1, ..., N . Observe that the
two conditions (7) are equivalent after the transformation of
Proposition 11. Again with no loss of generality, assume that
the tasks are already sorted in ascending order of demand
E(i) and apply the consumption u(i) = 1 for i = 1, ..., U
and u(i) = 0 for i = U + 1, ..., N . After this consumption,
we are left with the set of tasks (E(i) − u(i), T − 1, 1). We
have that

N∑

i=1

E(i) − u(i) ≤ UT −
N∑

i=1

u(i) = U(T − 1).

By contradiction suppose that

max
1≤i≤N

(
E(i) − u(i)

)
> T − 1.

This would necessary happen for a task i > U , as for all tasks
i ≤ U we know that u(i) = 1 and that E(i) ≤ T . Therefore
it must be that for some i > U we have E(i) − 1 > T − 1.
Because the demands E(i) were ordered, this means that∑N
i=1E

(i) > UT leading to a contradiction. Thus, we must
have

max
1≤i≤N

(
E(i) − u(i)

)
≤ T − 1.

The two conditions guaranteeing schedulability are met for
the time horizon T − 1, implying that the problem is
schedulable.

PROOF OF THEOREM 16

All decisions in U0 are feasible beacuse for all of them
‖u0‖1 ≤ U . We have then to check that the problem at the
next time step is schedulable. We use the characterization of
Lemma 15. By hypothesis of schedulability, we have that∑N
i=1E

(i) ≤ TU and that, for all tasks i, E(i) ≤ Tu.
Therefore at time 1, as ‖u0‖1 is always larger than U as
defined in (8), we have that

∑N
i=1E

(i)−‖u0‖1 ≤ (T −1)U .
Moreover, as all the tasks with zero slack are served, we
have that all slack are nonnegative at the next time step, and
therefore, for all i, E(i) − u(i)0 ≤ (T − 1)u.

PROOF OF THEOREM 17

We prove this by induction on the value of the largest
deadline T . For T = 1 the assertion is trivial. Now, assume
that the statement holds for T . Given a set of tasks with
largest deadline T + 1, consider a generic feasible schedule
{{v(i)k }Tk=0}Ni=1. Consider the pattern of consumption at the
interval T , namely {v(i)T }Ni=1. By contradiction assume that

the Minimum Effort Algorithm can not provide a feasible
schedule and consider its pattern of consumption at at the
interval T , namely {u(i)T }Ni=1.

If v(i)T ≤ u
(i)
T for all i = 1, ..., N , the tasks (E(i) −

u
(i)
T ,min{T (i), T}) are obviously schedulable and applying

the induction assumption we have that the Minimum Effort
Algorithm provides an integer schedule. This leads to a
contradiction.

Now assume that there exists some j for which v(j)T > u
(j)
T

leading necessarily to u(j)T = 0.
If N = 1, we would have that j = 1 and T (1) = T + 1.

Thus, the Minimum Effort Algorithm would have assigned
u
(j)
T = 1 and this would be again a contradiction. For N > 1,
v
(j)
T > u

(j)
T implies that there is some i 6= j for which

v
(i)
T < u

(i)
T . If this were not the case we would have that

N∑

l=1

v
(l)
T >

N∑

l=1

u
(l)
T

leading again to a contradiction: it is clear from the de-
scription of the Minimum Effort Algorithm that the global
consumption at the last interval is maximized in the returned
schedule.

So far we have proved that, if the Minimum Effort
Algorithm can not provide feasibility for a set of tasks,
then for every feasible scheduling (be it integer or not)
{{v(i)k }Tk=0}Ni=1 there exist i and j such that v(j)T > u

(j)
T = 0

and v(i)T < u
(i)
T = 1. Thus, we can write that

[v(1)T ... v
(i)
T ... v

(j)
T ... v

(N)
T] = [1−α(1) ... 1−α(i) ... α(j) ... α(N)] ,

[u(1)
T ... u

(i)
T ... u

(j)
T ... u

(N)
T] = [1 ... 1 ... 0 ... 0] ,

where the vector (α(1), ..., α(N)) has 1-norm that is different
from zero.

The space of all feasible scheduling is a compact set.
So, let us choose {{v(i)k }Tk=0}Ni=1 as the feasible scheduling
minimizing the 1-norm of (α(1), ..., α(N)). The minimal 1-
norm of (α(1), ..., α(N)) is larger than zero because of the
compactness of the space of all feasible scheduling.

Since the Minimum Effort Algorithm allocates consump-
tion giving priority to tasks with lower slack, we have that
s(i) ≤ s(j) and, since u(i) = u(j) = 1, we also have that
E(i) ≥ E(j).

Let v
(i)
T = 1 − α(i), and v

(j)
T = α(j) with

min{α(i), α(j)} > 0. As a consequence, we have that the
following relation holds
∣∣∣
{
k < T | v(i)k > 0

}∣∣∣ > E(i) ≥ E(j) ≥
∣∣∣
{
k < T | v(j)k = 1

}∣∣∣ .

Thus, there exists at least one interval k < T , where v(i)k > 0

and v(j)k < 1. Define α := min{α(i), α(j), v
(i)
k , 1−v(j)k } and

define the following feasible consumption

v̂
(i)
T = v

(i)
T + α v̂

(j)
T = v

(j)
T − α

v̂
(i)
k = v

(i)
k − α v̂

(j)
k = v

(j)
k + α.

In particular, we have that

[v̂(1)T ... v̂
(i)
T ... v̂

(j)
T ... v̂

(N)
T]

′
=

[1−α(1) ... 1−α(i)+α ... α(j)−α ... α(N)]
′

where the vector (α(1), ..., α(i) + α, ..., α(j) − α, ..., α(N))T

has 1-norm smaller than (α(1), ..., α(i), ..., α(j), ..., α(N))T

that was supposed to be minimal. Thus we have a contradic-
tion.

PROOF OF LEMMA 18

Observe that the Minimum Effort Algorithm starts com-
puting a feasible schedule iterating from the time t = T −1,
where T = max1≤i≤N T (i), till k = 0. Thus, if the i-th
task has deadline T (i) = 1, it influences the iterations of
the algorithm only when t = 0. Assume, by contradiction,
that there is a feasible schedule such that ‖u0‖1 ≤ U − 1.
Then, by adding to the original set of tasks also the tasks
(E(i), T (i), 1) = (1, 1, 1) for i = N + 1, ...N + U − U + 1,
we still have feasibility. However, by running the algorithm
on this modified set of task, we execute the same operations
till t = 1 and find that at t = 0 the problem is not feasible.
This contradiction proves the assertion.

PROOF OF THEOREM 19

Assume that there is a feasible integer scheduling where
u
(i1)
0 = . . . = u

(iM)
0 = 1, Let j be a task such that u(j)0 = 0

and s(j) ≤ s(im) for some 1 ≤ m ≤M . We will first prove
that the decision where

v
(i1)
0 = . . . = v

(im−1)
0 = v

(im+1)
0 = . . . = v

(iM)
0 = 1

v
(im)
0 = 0

v
(j)
0 = 1

v
(i)
0 = 0 for i 6= j, i1, ..., iM .

is admissible.
Without any loss of generality assume m = M . Let us

consider first the case where T (iM) ≤ T (j). If T (iM) ≤ T (j),
and since s(j)0 ≤ s

(iM)
0 , there is a time k such that 0 < k ≤

T (iM) and u(iM)
k = 0, u(j)k = 1. Thus, it is possible to make

the j-th task to be served in place of the iM -th one at time
0 and vice-versa at time k without violating the constraints
of the problem, as depicted in the following figure.

T (j)T (im)

im

j j

im

k

time

sc
h
ed
u
le
d
ta
sk

s

j j j

Now, let T (iM) > T (j). If there is a time 0 < k ≤ T (iM)

where u
(iM)
k = 0 and u

(j)
k = 1, we can operate the same

switch as before. Otherwise, since u(j)0 = 0, there must be
a time 0 < k′ ≤ T (j) where both the j-th and the iM -
th batteries consume, namely u

(iM)
k′ = 1, u(j)k′ = 1. Since

T (iM) > T (j), there also must be a time T (j) < k′′ ≤ T (iM)

where neither the j-th nor the iM -th batteries consume.
Now move the consumption of the iM -th battery from k′

to k′′. This is always possible: if at time k′′ we have that∑N
i=1 uk′′ < U no constraint is violated, otherwise it is

possible to find a battery j′ 6= j, iM such that u(j
′)

k′′ = 1,
u
(j′)
k′ = 0 and anticipate its consumption at time k′. After

this switch we have that at time k′ the iM -th battery does not
consume while j-th does. Switching consumption beetween
the two batteries at time 0 and k′ is now possible without
violating any constraint and the assertion is proved. This
scenario is depicted in the following figure.

T (j) T (im)

im

j j

im im im

j′

k′ k′′
time

sc
h
ed
u
le
d
ta
sk

s

Iterated application of the same reasoning allow to prove
that any decision v0 such that ‖v0‖1 = ‖u0‖1 and such that
s(v0) 4 s(u0), is also admissibile (as it is the first decision
in a feasible schedule). Finally, we conclude that this is also
true in the case in which ‖v0‖1 > ‖u0‖1 (and therefore
in all cases in which s(v0) 4 s(u0)), because that simply
means that other tasks have been served at time 0, together
with the ones served by the feasible schedule, necessarily
yielding another feasible schedule.

PROOF OF COROLLARY 20

Via Theorem 17 we know that a feasible decision such
that

∑(N)
i=1 u

(i)
0 = U exists. Because of the poset structure,

we know that the decision u0 with

u
(i)
0 =

{
1 for i = i1, . . . , iU

0 otherwise

is admissible, as the tasks with the least slack are served. The
result follows from the fact that any v0 in UMELS

0 satisfies
v0 4 u0.

