1,524 research outputs found

    Thermal entanglement in fully connected spin systems and its RPA description

    Full text link
    We examine the thermal pairwise entanglement in a symmetric system of nn spins fully connected through anisotropic XYZXYZ-type couplings embedded in a transverse magnetic field. We consider both the exact evaluation together with that obtained with the static path + random phase approximation (RPA) and the ensuing mean field + RPA. The latter is shown to provide an accurate analytic description of both the parallel and antiparallel thermal concurrence in large systems. We also analyze the limit temperature for pairwise entanglement, which is shown to increase for large fields and to decrease logarithmically with increasing nn. Special finite size effects are as well discussed.Comment: 9 pages, 5 figure

    Description of thermal entanglement with the static path plus random-phase approximation

    Full text link
    We discuss the application of the static path plus random phase approximation (SPA+RPA) and the ensuing mean field+RPA treatment to the evaluation of entanglement in composite quantum systems at finite temperature. These methods involve just local diagonalizations and the determination of the generalized collective vibrational frequencies. As illustration, we evaluate the pairwise entanglement in a fully connected XXZ chain of nn spins at finite temperature in a transverse magnetic field bb. It is shown that already the mean field+RPA provides an accurate analytic description of the concurrence below the mean field critical region (∣b∣<bc|b|<b_c), exact for large nn, whereas the full SPA+RPA is able to improve results for finite systems in the critical region. It is proved as well that for T>0T>0 weak entanglement also arises when the ground state is separable (∣b∣>bc|b|>b_c), with the limit temperature for pairwise entanglement exhibiting quite distinct regimes for ∣b∣bc|b|b_c.Comment: 20 pages, 5 figure

    Plant Essential Oils as Healthy Functional Ingredients of Nutraceuticals and Diet Supplements: A Review

    Get PDF
    Essential oils (EOs) are mixtures of volatile molecules endowed with health-promoting biological activities that go beyond their role as aromas and natural preservatives and can be exploited to develop functional foods and diet supplements. Their composition is briefly addressed along with regulatory aspects. The potential health benefit of human diet supplementation with EOs is outlined through a review of the recent literature on available clinical trials and preclinical research concerning EOs activity towards: (1) irritable bowel syndrome; (2) inflammatory bowel disease; (3) regulation of microbiota; (4) gastroprotection; (5) hepatoprotection; (6) protection of the urinary tract and diuresis; (7) management of metabolic disorders including hyperglycemia and hyperlipidemia; (8) anti-inflammatory and pain control; (9) immunomodulation and protection from influenza; and (10) neuroprotection and modulation of mood and cognitive performance. The emerging potential in such activities of selected EOs is given focus, particularly green and black cumin, bergamot, orange, myrtle, peppermint, sage, eucalyptus, lavender, thyme, lemon balm, ginger, and garlic

    Quiz Games as a model for Information Hiding

    Full text link
    We present a general computation model inspired in the notion of information hiding in software engineering. This model has the form of a game which we call quiz game. It allows in a uniform way to prove exponential lower bounds for several complexity problems of elimination theory.Comment: 46 pages, to appear in Journal of Complexit

    Relativistic Approach to Superfluidity in Nuclear Matter

    Get PDF
    Pairing correlations in symmetric nuclear matter are studied within a relativistic mean-field approximation based on a field theory of nucleons coupled to neutral (σ\sigma and ω\omega) and to charged (ϱ\varrho) mesons. The Hartree-Fock and the pairing fields are calculated in a self-consistent way. The energy gap is the result of a strong cancellation between the scalar and vector components of the pairing field. We find that the pair amplitude vanishes beyond a certain value of momentum of the paired nucleons. This fact determines an effective cutoff in the gap equation. The value of this cutoff gives an energy gap in agreement with the estimates of non relativistic calculations.Comment: 21 pages, REVTEX, 8 ps-figures, to appear in Phys.Rev.C. e-mail: [email protected]

    Spacetime quantum and classical mechanics with dynamical foliation

    Full text link
    The conventional phase space of classical physics treats space and time differently, and this difference carries over to field theories and quantum mechanics (QM). In this paper, the phase space is enhanced through two main extensions. Firstly, we promote the time choice of the Legendre transform to a dynamical variable. Secondly, we extend the Poisson brackets of matter fields to a spacetime symmetric form. The ensuing "spacetime phase space" is employed to obtain an explicitly covariant version of Hamilton equations for relativistic field theories. A canonical-like quantization of the formalism is then presented in which the fields satisfy spacetime commutation relations and the foliation is quantum. In this approach, the classical action is also promoted to an operator and retains explicit covariance through its non-separability in the matter-foliation partition. The problem of establishing a correspondence between the new noncausal framework (where fields at different times are independent) and conventional QM is solved through a generalization of spacelike correlators to spacetime. In this generalization, the Hamiltonian is replaced by the action, and conventional particles by off-shell particles. When the foliation is quantized, the previous map is recovered by conditioning on foliation eigenstates, in analogy with the Page and Wootters mechanism. We also provide an interpretation of the correspondence in which the causal structure of a given theory emerges from the quantum correlations between the system and an environment. This idea holds for general quantum systems and allows one to generalize the density matrix to an operator containing the information of correlators both in space and time.Comment: 25 pages, 4 figure

    Path Integrals from Spacetime Quantum Actions

    Full text link
    We present a spacetime Hilbert space formulation of Feynman path integrals (PIs). It relies on a tensor product structure in time which provides extended representations of dynamical quantum observables through a spacetime quantum action operator. As a consequence, the ``sum over paths'' of the different PI formulations naturally arise within the same Hilbert space, with each one associated with a different quantum trajectory basis. New insights on PI-based results naturally follow, including exact discretizations and a non-trivial approach to the continuum limit.Comment: 8 pages, 1 figur

    Spacetime Quantum Actions

    Get PDF
    We propose a formulation of quantum mechanics in an extended Fock space in which a tensor product structure is applied to time. Subspaces of histories consistent with the dynamics of a particular theory are defined by a direct quantum generalization of the corresponding classical action. The diagonalization of such quantum actions enables us to recover the predictions of conventional quantum mechanics and reveals an extended unitary equivalence between all physical theories. Quantum correlations and coherent effects across time and between distinct theories acquire a rigorous meaning, which is encoded in the rich temporal structure of physical states. Connections with modern relativistic schemes and the path integral formulation also emerge.Comment: 16 pages, 3 figures, accepted for publication in Phys. Rev.

    Pharmacological management of COVID-19 patients with ARDS (CARDS): A narrative review

    Get PDF
    Coronavirus disease 2019 (COVID-19) is highly infectious. It has been highlighted that if not expertly and individually managed with consideration of the vasocentric features, a COVID-19 patient with an acute respiratory distress syndrome (CARDS) may eventually develop multiorgan failure. Unfortunately, there is still no definite drug for CARDS that is capable of reducing either short-term or long-term mortality and no specific treatments for COVID-19 exist right now. In this narrative review, based on a selective literature search in EMBASE, MEDLINE, Scopus, The Cochrane Library, Web of Science, and Google Scholar and ClinicalTrials.gov, we have examined the emerging evidence on the possible treatment of CARDS. Although numerous pharmacologic therapies to improve clinical outcomes in CARDS have been studied also in clinical trials, none have shown efficacy and there is great uncertainty about their effectiveness. There is still no recommendation for the therapeutic use of any specific agent to treat CARDS because no drugs are validated to have significant efficacy in clinical treatment of COVID-19 patients in large-scale trials. However, there exist a number of drugs that may be useful at least in some patients. The real challenge now is to link the right patient to the right treatment
    • …
    corecore