6 research outputs found

    Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes

    Get PDF
    Background: Hirschsprung disease (HSCR), which is congenital obstruction of the bowel, results from a failure of enteric nervous system (ENS) progenitors to migrate, proliferate, differentiate, or survive within the distal intestine. Previous studies that have searched for genes underlying HSCR have focused on ENS-related pathways and genes not fitting the current knowledge have thus often been ignored. We identify and validate novel HSCR genes using whole exome sequencing (WES), burden tests, in silico prediction, unbiased in vivo analyses of the mutated genes in zebrafish, and expression analyses in zebrafish, mouse, and human. Results: We performed de novo mutation (DNM) screening on 24 HSCR trios. We identify 28 DNMs in 21 different genes. Eight of the DNMs we identified occur in RET, the main HSCR gene, and the remaining 20 DNMs reside in genes not reported in the ENS. Knockdown of all 12 genes with missense or loss-of-function DNMs showed that the orthologs of four genes (DENND3, NCLN, NUP98, and TBATA) are indispensable for ENS development in zebrafish, and these results were confirmed by CRISPR knockout. These genes are also expressed in human and mouse gut and/or ENS progenitors. Importantly, the encoded proteins are linked to neuronal processes shared by the central nervous system and the ENS. Conclusions: Our data open new fields of investigation into HSCR pathology and provide novel insights into the development of the ENS. Moreover, the study demonstrates that functional analyses of genes carrying DNMs are warranted to delineate the full genetic architecture of rare complex diseases

    Homozygous nonsense mutations in KIAA1279 are associated with malformations of the central and enteric nervous systems

    No full text
    We identified, by homozygosity mapping, a novel locus on 10q21.3-q22.1 for Goldberg-Shprintzen syndrome (GOSHS) in a consanguineous Moroccan family. Phenotypic features of GOSHS in this inbred family included microcephaly and mental retardation, which are both central nervous system defects, as well as Hirschsprung disease, an enteric nervous system defect. Furthermore, since bilateral generalized polymicogyria was diagnosed in all patients in this family, this feature might also be considered a key feature of the syndrome. We demonstrate that homozygous nonsense mutations in KIAA1279 at 10q22.1, encoding a protein with two tetratrico peptide repeats, underlie this syndromic form of Hirschsprung disease and generalized polymicrogyria, establishing the importance of KIAA1279 in both enteric and central nervous system development

    A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy

    No full text
    Haploinsufficiency for the transcription factor SOX10 is associated with the pigmentary deficiencies of Waardenburg syndrome (WS) and is modeled in Sox10 haploinsufficient mice (Sox10LacZ/+). As genetic background affects WS severity in both humans and mice, we established an N-ethyl-N-nitrosourea (ENU) mutagenesis screen to identify modifiers that increase the phenotypic severity of Sox10LacZ/+ mice. Analysis of 230 pedigrees identified three modifiers, named modifier of Sox10 neurocristopathies (Mos1, Mos2 and Mos3). Linkage analysis confirmed their locations on mouse chromosomes 13, 4 and 3, respectively, within regions distinct from previously identified WS loci. Positional candidate analysis of Mos1 identified a truncation mutation in a hedgehog(HH)-signaling mediator, GLI-Kruppel family member 3 (Gli3). Complementation tests using a second allele of Gli3 (Gli3Xt-J) confirmed that a null mutation of Gli3 causes the increased hypopigmentation in Sox10LacZ/+;Gli3Mos1/+ double heterozygotes. Early melanoblast markers (Mitf, Sox10, Dct, and Si) are reduced in Gli3Mos1/Mos1 embryos, indicating that loss of GLI3 signaling disrupts melanoblast specification. In contrast, mice expressing only the GLI3 repressor have normal melanoblast specification, indicating that the full-length GLI3 activator is not required for specification of neural crest to the melanocyte lineage. This study demonstrates the feasibility of sensitized screens to identify disease modifier loci and implicates GLI3 and other HH signaling components as modifiers of human neurocristopathies
    corecore