3,409 research outputs found

    Exploring the Chemical Composition and Double Horizontal Branch of the Bulge Globular Cluster NGC 6569

    Get PDF
    Photometric and spectroscopic analyses have shown that the Galactic bulge cluster Terzan 5 hosts several populations with different metallicities and ages that manifest as a double red horizontal branch (HB). A recent investigation of the massive bulge cluster NGC 6569 revealed a similar, though less extended, HB luminosity split, but little is known about the cluster's detailed chemical composition. Therefore, we have used high-resolution spectra from the Magellan-M2FS and VLT-FLAMES spectrographs to investigate the chemical compositions and radial velocity distributions of red giant branch and HB stars in NGC 6569. We found the cluster to have a mean heliocentric radial velocity of -48.8 km/s (sigma = 5.3 km/s; 148 stars) and a mean [Fe/H] =-0.87 dex (19 stars), but the cluster's 0.05 dex [Fe/H] dispersion precludes a significant metallicity spread. NGC 6569 exhibits light- and heavy-element distributions that are common among old bulge/inner Galaxy globular clusters, including clear (anti)correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data suggest that NGC 6569 may be composed of at least two distinct populations, and the cluster's low mean [La/Eu] = -0.11 dex indicates significant pollution with r-process material. We confirm that both HBs contain cluster members, but metallicity and light-element variations are largely ruled out as sources for the luminosity difference. However, He mass fraction differences as small as delta Y ~ 0.02 cannot be ruled out and may be sufficient to reproduce the double HB.Comment: 72 pages, 14 figures, 8 tables; published in The Astronomical Journal; electronic versions of all tables are available in the published versio

    Masses for the Local Group and the Milky Way

    Get PDF
    We use the very large Millennium Simulation of the concordance Λ\LambdaCDM cosmogony to calibrate the bias and error distribution of Timing Argument estimators of the masses of the Local Group and of the Milky Way. From a large number of isolated spiral-spiral pairs similar to the Milky Way/Andromeda system, we find the interquartile range of the ratio of timing mass to true mass to be a factor of 1.8, while the 5% and 95% points of the distribution of this ratio are separated by a factor of 5.7. Here we define true mass as the sum of the ``virial'' masses M200M_{200} of the two dominant galaxies. For current best values of the distance and approach velocity of Andromeda this leads to a median likelihood estimate of the true mass of the Local Group of 5.27\times 10^{12}\msun, or log⁡MLG/M⊙=12.72\log M_{LG}/M_\odot = 12.72, with an interquartile range of [12.58,12.83][12.58, 12.83] and a 5% to 95% range of [12.26,13.01][12.26, 13.01]. Thus a 95% lower confidence limit on the true mass of the Local Group is 1.81\times 10^{12}\msun. A timing estimate of the Milky Way's mass based on the large recession velocity observed for the distant satellite Leo I works equally well, although with larger systematic uncertainties. It gives an estimated virial mass for the Milky Way of 2.43 \times 10^{12}\msun with a 95% lower confidence limit of 0.80 \times 10^{12}\msun.Comment: 11 pages, 6 figures, MNRAS accepted. Added a new discussion paragraph and a new figure regarding the relative transverse velocity but conclusions unchange

    A Chemical Composition Survey of the Iron-Complex Globular Cluster NGC 6273 (M 19)

    Get PDF
    Recent observations have shown that a growing number of the most massive Galactic globular clusters contain multiple populations of stars with different [Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been recognized as a member of this "iron-complex" cluster class, and we provide here a chemical and kinematic analysis of > 300 red giant branch (RGB) and asymptotic giant branch (AGB) member stars using high resolution spectra obtained with the Magellan-M2FS and VLT-FLAMES instruments. Multiple lines of evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that ranges from about [Fe/H] = -2 to -1 dex, and may include at least three populations with different [Fe/H] values. The three populations identified here contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars, but a Mg-Al anti-correlation may only be present in stars with [Fe/H] > -1.65. The strong correlation between [La/Eu] and [Fe/H] suggests that the s-process must have dominated the heavy element enrichment at higher metallicities. A small group of stars with low [alpha/Fe] is identified and may have been accreted from a former surrounding field star population. The cluster's large abundance variations are coupled with a complex, extended, and multimodal blue horizontal branch (HB). The HB morphology and chemical abundances suggest that NGC 6273 may have an origin that is similar to omega Cen and M 54.Comment: Accepted for Publication in The Astrophysical Journal; 50 pages; 18 figures; 8 tables; higher resolution figures are available upon request or in the published journal articl

    Dwarf Cepheids in the Carina Dwarf Spheroidal Galaxy

    Get PDF
    We have discovered 20 dwarf Cepheids (DC) in the Carina dSph galaxy from the analysis of individual CCD images obtained for a deep photometric study of the system. These short-period pulsating variable stars are by far the most distant (~100 kpc) and faintest (V ~ 23.0) DCs known. The Carina DCs obey a well-defined period-luminosity relation, allowing us to readily distinguish between overtone and fundamental pulsators in nearly every case. Unlike RR Lyr stars, the pulsation mode turns out to be uncorrelated with light-curve shape, nor do the overtone pulsators tend towards shorter periods compared to the fundamental pulsators. Using the period-luminosity (PL) relations from Nemec et al. (1994 AJ, 108, 222) and McNamara (1995, AJ, 109, 1751), we derive (m-M)_0 = 20.06 +/- 0.12, for E(B-V) = 0.025 and [Fe/H] = -2.0, in good agreement with recent, independent estimates of the distance/reddening of Carina. The error reflects the uncertainties in the DC distance scale, and in the metallicity and reddening of Carina. The frequency of DCs among upper main sequence stars in Carina is approximately 3%. The ratio of dwarf Cepheids to RR Lyr stars in Carina is 0.13 +/- 0.10, though this result is highly sensitive to the star-formation history of Carina and the evolution of the Horizontal Branch. We discuss how DCs may be useful to search effectively for substructure in the Galactic halo out to Galactocentric distances of ~100 kpc.Comment: 20 pages of text, 7 figure

    The Blue Straggler Population in Dwarf Galaxies

    Full text link
    In this chapter I review the recent developments regarding the study of Blue Stragglers (BSS) in dwarf galaxies. The loose density environment of dwarf galaxies resembles that of the Galactic Halo, hence it is natural to compare their common BSS properties. At the same time, it is unescapable to compare with the BSS properties in Galactic Globular clusters, which constitute the reference point for BSS studies. Admittedly, the literature on BSS in dwarf galaxies is not plentiful. The limitation is mostly due to the large distance to even the closest dwarf galaxies. Nevertheless, recent studies have allowed a deeper insight on the BSS photometric properties that are worth examining.Comment: Chapter 6, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    The Nature of the Density Clump in the Fornax Dwarf Spheroidal Galaxy

    Full text link
    We have imaged the recently discovered stellar overdensity located approximately one core radius from the center of the Fornax dwarf spheroidal galaxy using the Magellan Clay 6.5m telescope with the Magellan Instant Camera (MagIC). Superb seeing conditions allowed us to probe the stellar populations of this overdensity and of a control field within Fornax to a limiting magnitude of R=26. The color-magnitude diagram of the overdensity field is virtually identical to that of the control field with the exception of the presence of a population arising from a very short (less than 300 Myr in duration) burst of star formation 1.4 Gyr ago. Coleman et al. have argued that this overdensity might be related to a shell structure in Fornax that was created when Fornax captured a smaller galaxy. Our results are consistent with this model, but we argue that the metallicity of this young component favors a scenario in which the gas was part of Fornax itself.Comment: 24 pages including 8 figures and 3 tables. Accepted by Astronomical Journa

    Variable stars in the Fornax dSph Galaxy. II. Pulsating stars below the horizontal branch

    Full text link
    We have carried out an intensive survey of the northern region of the Fornax dwarf spheroidal galaxy with the aim of detecting the galaxy's short--period pulsating stars (P<0.25 days). Observations collected over three consecutive nights with the Wide Field Imager of the 2.2m MPI telescope at ESO allowed us to detect 85 high-amplitude (0.20-1.00 mag in B-light) variable stars with periods in the range from 0.046 to 0.126 days, similar to SX Phoenicis stars in Galactic metal-poor stellar populations. The plots of the observed periods vs. the B and V magnitudes show a dispersion largely exceeding the observational errors. To disentangle the matter, we separated the first-overtone from the fundamental-mode pulsators and tentatively identified a group of subluminous variables, about 0.35 mag fainter than the others. Their nature as either metal-poor intermediate-age stars or stars formed by the merging of close binary systems is discussed. The rich sample of the Fornax variables also led us to reconstruct the Period-Luminosity relation for short-period pulsating stars. An excellent linear fit, M(V)=-1.83(+/-0.08)-3.65(+/-0.07) log P(fund), was obtained using 153 Delta Scuti and SX Phoenicis stars in a number of different stellar systems.Comment: 11 pages plus 1 on-line figure and 1 on-line table; accepted for publication in ApJ. Part of this work has been the subject of the Laurea thesis of LDA. His supervisor and our colleague, Prof. Laura E. Pasinetti, suddendly passed away on September 13, 2006. Several astronomers have been trained under her tutelage and we gratefully honor her memor

    The Case Against Cosmology

    Get PDF
    It is argued that some of the recent claims for cosmology are grossly overblown. Cosmology rests on a very small database: it suffers from many fundamental difficulties as a science (if it is a science at all) whilst observations of distant phenomena are difficult to make and harder to interpret. It is suggested that cosmological inferences should be tentatively made and sceptically received.Comment: 9 pages, no figure

    Detectability of Weakly Interacting Massive Particles in the Sagittarius Dwarf Tidal Stream

    Full text link
    Tidal streams of the Sagittarius dwarf spheroidal galaxy (Sgr) may be showering dark matter onto the solar system and contributing approx (0.3--23)% of the local density of our Galactic Halo. If the Sagittarius galaxy contains WIMP dark matter, the extra contribution from the stream gives rise to a step-like feature in the energy recoil spectrum in direct dark matter detection. For our best estimate of stream velocity (300 km/sec) and direction (the plane containing the Sgr dwarf and its debris), the count rate is maximum on June 28 and minimum on December 27 (for most recoil energies), and the location of the step oscillates yearly with a phase opposite to that of the count rate. In the CDMS experiment, for 60 GeV WIMPs, the location of the step oscillates between 35 and 42 keV, and for the most favorable stream density, the stream should be detectable at the 11 sigma level in four years of data with 10 keV energy bins. Planned large detectors like XENON, CryoArray and the directional detector DRIFT may also be able to identify the Sgr stream.Comment: 26 pages, 4 figure

    Modelling the scope to conserve an endemic-rich mountain butterfly taxon in a changing climate

    Full text link
    Taxa restricted to mountains may be vulnerable to global warming, unless local-scale topographic variation and conservation actions can protect them against expected changes to the climate. We tested how climate change will affect the 19 mountain-restricted Erebia species of the Iberian Peninsula, of which 7 are endemic. To examine the scope for local topographic variation to protect against warming, we applied species distribution models (HadGEM2 and MPI) at two spatial scales (10 × 10 and 1 × 1 km) for two representative concentration pathways (RCP4.5 and RCP8.5) in 2050 and 2070. We also superimposed current and future ranges on the protected area (PA) network to identify priority areas for adapting Erebia conservation to climate change. In 10 × 10 km HadGEM2 models, climatically suitable areas for all species decreased in 2050 and 2070 (average −95.7%). Modelled decreases at 1 × 1 km were marginally less drastic (−95.3%), and 14 out of 19 species were still expected to lose their entire climatically favourable range by 2070. The PA network is well located to conserve the species that are expected to retain some climatically suitable areas in 2070. However, we identify 25 separate 10 × 10 km squares where new PAs would help to adapt the network to expected range shifts or contractions by Erebia. Based on our results, adapting the conservation of range-restricted mountain taxa to projected climate change will require the implementation of complementary in situ and ex situ measures alongside urgent climate change mitigationBiology Department from Universidad Autonoma de Madrid, Grant/Award Number: SBPLY/17/180501/000492; European Regional Development Fund; MCIU/AEI/ FEDER, UE, Grant/Award Number: RTI2018-096739-B-C21; NexTdive project, Grant/Award Number: PID2021-124187NBI00; Spanish Ministry of Science and Innovatio
    • 

    corecore