217 research outputs found

    Pharmacoepigenetics in Heart Failure

    Get PDF
    Epigenetics studies inheritable changes of genes and gene expression that do not concern DNA nucleotide variation. Such modifications include DNA methylation, several forms of histone modification, and microRNAs. From recent studies, we know not only that genetic changes account for heritable phenotypic variation, but that epigenetic changes also play an important role in the variation of predisposition to disease and to drug response. In this review, we discuss recent evidence of epigenetic changes that play an important role in the development of cardiac hypertrophy and heart failure and may dictate response to therapy

    Genetic variability of arrhenotokous and thelytokous Venturiacanescens (Hymenoptera)

    Get PDF
    The ichneumonid wasp Venturia canescens (Hymenoptera) has been studied extensively for foraging behaviour and population dynamics of sexually (arrhenotokous) and parthenogenetically (thelytokous) reproducing individuals. Here we report the development of a set of microsatellite markers for V.canescens and use them to show that arrhenotokous individuals have more genetic variability than thelytokous ones, which are even homozygous for all tested loci. Crosses between arrhenotokous individuals suggested one marker, Vcan071, to be linked with the Complementary Sex Determiner (CSD) locus and one, Vcan109, with the Virus Like Protein (vlp-p40) locus. The genome size of V. canescens was estimated to be 274–279 Mb. We discuss how both reproductive modes can give rise to the observed genetic variability and how the new markers can be used for future genetic studies of V. canescens

    Translational overview of cytokine inhibition in acute myocardial infarction and chronic heart failure

    Get PDF
    Many cytokines are currently under investigation as potential target to improve cardiac function and outcome in the setting of acute myocardial infarction (MI) or chronic heart failure (HF). Here we aim to provide a translational overview of cytokine inhibiting therapies tested in experimental models and clinical studies. In various experimental studies, inhibition of interleukin-1 (IL-1), -6 (IL-6), -8 (IL-8), monocyte chemoattractant protein -1 (MCP-1), CC- and CXC chemokines, and tumor necrosis factor-alpha (TNF-alpha) had beneficial effects on cardiac function and outcome. On the other hand, neutral or even detrimental results have been reported for some (IL-1, IL-6, IL-8, and MCP-1). Ambivalence of cytokine function, differences in study designs, treatment regimens and chosen endpoints hamper the translation of experimental research into clinical practice. Human studies are currently limited to IL-1 beta inhibition, IL-1 receptor antagonists (IL-1RA), IL-6 receptor antagonists (IL-6RA) or TNF inhibition. Despite favorable effects on cardiovascular events observed in retrospective cohort studies of rheumatoid arthritis patients treated with TNF inhibition or IL-1RA, most prospective studies reported disappointing and inconsistent results. Smaller studies (n <100) generally reported favorable results of anticytokine therapy on cardiac function, but only one of the larger studies (n > 100) evaluating IL-1 beta inhibition presented positive results on outcome. In conclusion, of the 10 anticytokine therapies tested in animals models beneficial effects have been reported in at least one setting. In larger clinical studies, findings were unsatisfactory in all but one. Many anticytokine therapies with promising animal experimental data continue to require further evaluation in humans. (C) 2018 The Authors. Published by Elsevier Inc

    Leukocyte telomere length and left ventricular function after acute ST-elevation myocardial infarction:data from the glycometabolic intervention as adjunct to primary coronary intervention in ST elevation myocardial infarction (GIPS-III) trial

    Get PDF
    Background Telomere length has been associated with coronary artery disease and heart failure. We studied whether leukocyte telomere length is associated with left ventricular ejection fraction (LVEF) after ST-elevation myocardial infarction (STEMI). Methods and results Leukocyte telomere length (LTL) was determined using the monochrome multiplex quantitative PCR method in 353 patients participating in the glycometabolic intervention as adjunct to primary percutaneous coronary intervention in STEMI III trial. LVEF was assessed by magnetic resonance imaging. The mean age of patients was 58.9 +/- A 11.6 years, 75 % were male. In age- and gender-adjusted models, LTL at baseline was significantly associated with age (beta +/- A standard error; -0.33 +/- A 0.01; P <0.01), gender (0.15 +/- A 0.03; P <0.01), TIMI flow pre-PCI (0.05 +/- A 0.03; P <0.01), TIMI flow post-PCI (0.03 +/- A 0.04; P <0.01), myocardial blush grade (-0.05 +/- A 0.07; P <0.01), serum glucose levels (-0.11 +/- A 0.01; P = 0.03), and total leukocyte count (-0.11 +/- A 0.01; P = 0.04). At 4 months after STEMI, LVEF was well preserved (54.1 +/- A 8.4 %) and was not associated with baseline LTL (P = 0.95). Baseline LTL was associated with n-terminal pro-brain natriuretic peptide (NT-proBNP) at 4 months (-0.14 +/- A 0.01; P = 0.02), albeit not independent for age and gender. Conclusion Our study does not support a role for LTL as a causal factor related to left ventricular ejection fraction after STEMI

    A Genome-Wide Association Study of Circulating Galectin-3

    Get PDF
    Galectin-3 is a lectin involved in fibrosis, inflammation and proliferation. Increased circulating levels of galectin-3 have been associated with various diseases, including cancer, immunological disorders, and cardiovascular disease. To enhance our knowledge on galectin-3 biology we performed the first genome-wide association study (GWAS) using the Illumina HumanCytoSNP-12 array imputed with the HapMap 2 CEU panel on plasma galectin-3 levels in 3,776 subjects and follow-up genotyping in an additional 3,516 subjects. We identified 2 genome wide significant loci associated with plasma galectin-3 levels. One locus harbours the LGALS3 gene (rs2274273; P = 2.35 × 10(-188)) and the other locus the ABO gene (rs644234; P = 3.65 × 10(-47)). The variance explained by the LGALS3 locus was 25.6% and by the ABO locus 3.8% and jointly they explained 29.2%. Rs2274273 lies in high linkage disequilibrium with two non-synonymous SNPs (rs4644; r(2) = 1.0, and rs4652; r(2) = 0.91) and wet lab follow-up genotyping revealed that both are strongly associated with galectin-3 levels (rs4644; P = 4.97 × 10(-465) and rs4652 P = 1.50 × 10(-421)) and were also associated with LGALS3 gene-expression. The origins of our associations should be further validated by means of functional experiments

    Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Get PDF
    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9×10⁻ÂčÂč to 5.0×10⁻ÂČÂč). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved  in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6×10⁻⁶). Our results provide new evidence for the role of DNA methylation in blood pressure regulation

    Volume of Bone Metastasis Assessed with Whole-Body Diffusion-weighted Imaging Is Associated with Overall Survival in Metastatic Castration-resistant Prostate Cancer.

    Get PDF
    Purpose To determine the correlation between the volume of bone metastasis as assessed with diffusion-weighted (DW) imaging and established prognostic factors in metastatic castration-resistant prostate cancer (mCRPC) and the association with overall survival (OS). Materials and Methods This retrospective study was approved by the institutional review board; informed consent was obtained from all patients. The authors analyzed whole-body DW images obtained between June 2010 and February 2013 in 53 patients with mCRPC at the time of starting a new line of anticancer therapy. Bone metastases were identified and delineated on whole-body DW images in 43 eligible patients. Total tumor diffusion volume (tDV) was correlated with the bone scan index (BSI) and other prognostic factors by using the Pearson correlation coefficient (r). Survival analysis was performed with Kaplan-Meier analysis and Cox regression. Results The median tDV was 503.1 mL (range, 5.6-2242 mL), and the median OS was 12.9 months (95% confidence interval [CI]: 8.7, 16.1 months). There was a significant correlation between tDV and established prognostic factors, including hemoglobin level (r = -0.521, P < .001), prostate-specific antigen level (r = 0.556, P < .001), lactate dehydrogenase level (r = 0.534, P < .001), alkaline phosphatase level (r = 0.572, P < .001), circulating tumor cell count (r = 0.613, P = .004), and BSI (r = 0.565, P = .001). A higher tDV also showed a significant association with poorer OS (hazard ratio, 1.74; 95% CI: 1.02, 2.96; P = .035). Conclusion Metastatic bone disease from mCRPC can be evaluated and quantified with whole-body DW imaging. Whole-body DW imaging-generated tDV showed correlation with established prognostic biomarkers and is associated with OS in mCRPC. (©) RSNA, 2016 Online supplemental material is available for this article

    Mutations in CYB561 Causing a Novel Orthostatic Hypotension Syndrome

    Get PDF
    Rationale: Orthostatic hypotension is a common clinical problem, but the underlying mechanisms have not been fully delineated. Objective: We describe two families, with four patients in total, suffering from severe life-threatening orthostatic hypotension due to a novel cause. Methods and Results: As in dopamine ÎČ-hydroxylase deficiency (DÎČH), concentrations of norepinephrine and epinephrine in the patients were very low. Plasma DÎČH activity, however, was normal and the DBH gene had no mutations. Molecular genetic analysis was performed to determine the underlying genetic cause. Homozygosity mapping and exome and Sanger sequencing revealed pathogenic homozygous mutations in the gene encoding cytochrome b561 (CYB561); a missense variant c.262G>A, p.Gly88Arg in exon 3 in the Dutch family and a nonsense mutation (c.131G>A, p.Trp44*) in exon 2 in the American family. Expression of CYB561 was investigated using RNA from different human adult and fetal tissues, transcription of RNA into cDNA and real-time quantitative polymerase chain reaction. The CYB561 gene was found to be expressed in many human tissues, in particular the brain. The CYB561 protein defect leads to a shortage of ascorbate inside the catecholamine secretory vesicles leading to a functional DÎČH deficiency. The concentration of the catecholamines and downstream metabolites was measured in brain and adrenal tissue of six CYB561 knockout mice (reporter-tagged deletion allele (post-Cre), genetic background C57BL/6NTac). The concentration of norepinephrine and normetanephrine was decreased in whole brain homogenates of the CYB561(-/-) mice compared to wild type mice (p<0.01) and the concentration of normetanephrine and metanephrine was decreased in adrenal glands (p<0.01), recapitulating the clinical phenotype. The patients responded favorably to treatment with L-dihydroxyphenylserine, which can be converted directly to norepinephrine. Conclusions: This study is the first to implicate cytochrome b561 in disease by showing that pathogenic mutations in CYB561 cause an as yet unknown disease in neurotransmitter metabolism causing orthostatic hypotension. as yet unknown disease in neurotransmitter metabolism causing orthostatic hypotension
    • 

    corecore