104 research outputs found

    TDDonto2: A Test-Driven Development Plugin for arbitrary TBox and ABox axioms

    Get PDF
    Ontology authoring is a complex task where modellers rely heavily on the automated reasoner for verification of changes, using effectively a time-consuming test-last approach. Test-first with Test-Driven Development aims to speed up such processes, but tools to date covered only a subset of possible OWL 2 DL axioms and provide limited feedback. We have addressed these issues with a model for TDD testing to give more feedback to the modeller and seven new, generic, TDD algorithms that also cover OWL 2 DL class expressions on the left-hand side of inclusions and ABox assertions by availing of several reasoner methods. The model and algorithms have been implemented as a Prot\'eg\'e plugin, TDDonto2

    A Systematic Approach to Prioritise Diagnostically Useful Findings for Inclusion in Electronic Health Records as Discrete Data to Improve Clinical Artificial Intelligence Tools and Genomic Research.

    Get PDF
    AIMS: The recent widespread use of electronic health records (EHRs) has opened the possibility for innumerable artificial intelligence (AI) tools to aid in genomics, phenomics, and other research, as well as disease prevention, diagnosis, and therapy. Unfortunately, much of the data contained in EHRs are not optimally structured for even the most sophisticated AI approaches. There are very few published efforts investigating methods for recording discrete data in EHRs that would not slow current clinical workflows or ways to prioritise patient characteristics worth recording. Here, we propose an approach to identify and prioritise findings (phenotypes) useful for differentiating diseases, with an initial focus on relatively common small B-cell lymphomas. MATERIALS AND METHODS: A website enabling crowd-sourced recording of diseases and phenotypes was developed. An expert committee in the field of B-cell lymphomas standardised phenotype terminology for use in digital resources, and select terms were included in the Human Phenotype Ontology (HPO). A total of 100 patient lymph node biopsy samples were evaluated, and phenotypes were recorded as discrete data. Bayesian networks (BNs) were developed based on these data, and their diagnostic accuracy and ability to prioritise these phenotypes for inclusion in EHRs were assessed. RESULTS: Out of 146 phenotypes identified from the website as potentially useful for differentiating four different lymphomas from each other and from benign lymph nodes, 70-75 were included in BNs. The diagnostic accuracy of different naïve BNs was 96.3% for non-marginal zone lymphoma cases and 50% for marginal zone lymphoma cases when all of the included phenotypes were used and 93.8% for non-marginal zone lymphoma cases and 27.5% for marginal zone lymphoma cases when only 15 phenotypes were included in the BNs. CONCLUSION: This pilot provides a starting point for systematic improvement and a dataset for comparing related approaches

    The Environmental Conditions, Treatments, and Exposures Ontology (ECTO): connecting toxicology and exposure to human health and beyond.

    Get PDF
    BACKGROUND: Evaluating the impact of environmental exposures on organism health is a key goal of modern biomedicine and is critically important in an age of greater pollution and chemicals in our environment. Environmental health utilizes many different research methods and generates a variety of data types. However, to date, no comprehensive database represents the full spectrum of environmental health data. Due to a lack of interoperability between databases, tools for integrating these resources are needed. In this manuscript we present the Environmental Conditions, Treatments, and Exposures Ontology (ECTO), a species-agnostic ontology focused on exposure events that occur as a result of natural and experimental processes, such as diet, work, or research activities. ECTO is intended for use in harmonizing environmental health data resources to support cross-study integration and inference for mechanism discovery. METHODS AND FINDINGS: ECTO is an ontology designed for describing organismal exposures such as toxicological research, environmental variables, dietary features, and patient-reported data from surveys. ECTO utilizes the base model established within the Exposure Ontology (ExO). ECTO is developed using a combination of manual curation and Dead Simple OWL Design Patterns (DOSDP), and contains over 2700 environmental exposure terms, and incorporates chemical and environmental ontologies. ECTO is an Open Biological and Biomedical Ontology (OBO) Foundry ontology that is designed for interoperability, reuse, and axiomatization with other ontologies. ECTO terms have been utilized in axioms within the Mondo Disease Ontology to represent diseases caused or influenced by environmental factors, as well as for survey encoding for the Personalized Environment and Genes Study (PEGS). CONCLUSIONS: We constructed ECTO to meet Open Biological and Biomedical Ontology (OBO) Foundry principles to increase translation opportunities between environmental health and other areas of biology. ECTO has a growing community of contributors consisting of toxicologists, public health epidemiologists, and health care providers to provide the necessary expertise for areas that have been identified previously as gaps

    Representing glycophenotypes: semantic unification of glycobiology resources for disease discovery.

    Get PDF
    While abnormalities related to carbohydrates (glycans) are frequent for patients with rare and undiagnosed diseases as well as in many common diseases, these glycan-related phenotypes (glycophenotypes) are not well represented in knowledge bases (KBs). If glycan-related diseases were more robustly represented and curated with glycophenotypes, these could be used for molecular phenotyping to help to realize the goals of precision medicine. Diagnosis of rare diseases by computational cross-species comparison of genotype-phenotype data has been facilitated by leveraging ontological representations of clinical phenotypes, using Human Phenotype Ontology (HPO), and model organism ontologies such as Mammalian Phenotype Ontology (MP) in the context of the Monarch Initiative. In this article, we discuss the importance and complexity of glycobiology and review the structure of glycan-related content from existing KBs and biological ontologies. We show how semantically structuring knowledge about the annotation of glycophenotypes could enhance disease diagnosis, and propose a solution to integrate glycophenotypes and related diseases into the Unified Phenotype Ontology (uPheno), HPO, Monarch and other KBs. We encourage the community to practice good identifier hygiene for glycans in support of semantic analysis, and clinicians to add glycomics to their diagnostic analyses of rare diseases

    KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response

    Get PDF
    Integrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time-consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community vary drastically for different tasks; the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians. To address these challenges, we created KG-COVID-19, a flexible framework that ingests and integrates heterogeneous biomedical data to produce knowledge graphs (KGs), and applied it to create a KG for COVID-19 response. This KG framework also can be applied to other problems in which siloed biomedical data must be quickly integrated for different research applications, including future pandemics

    KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response.

    Get PDF
    Integrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time-consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community vary drastically for different tasks; the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians. To address these challenges, we created KG-COVID-19, a flexible framework that ingests and integrates heterogeneous biomedical data to produce knowledge graphs (KGs), and applied it to create a KG for COVID-19 response. This KG framework also can be applied to other problems in which siloed biomedical data must be quickly integrated for different research applications, including future pandemics

    The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease.

    Get PDF
    BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04

    The OWL Reasoner Evaluation (ORE) 2015 Resources

    Get PDF
    The OWL Reasoner Evaluation (ORE) Competition is anannual competition (with an associated workshop) which pits OWL 2compliant reasoners against each other on various standard reasoningtasks over naturally occurring problems. The 2015 competition was thethird of its sort and had 14 reasoners competing in six tracks comprisingthree tasks (consistency, classication, and realisation) over two proles(OWL 2 DL and EL). In this paper, we outline the design of the competitionand present the infrastructure used for its execution: the corporaof ontologies, the competition framework, and the submitted systems.All resources are publicly available on the Web, allowing users to easilyre-run the 2015 competition, or reuse any of the ORE infrastructure forreasoner experiments or ontology analysis
    corecore