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SUMMARY

Integrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to the
COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for
SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time-
consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by
the research community vary drastically for different tasks; the optimal data for a machine learning task,
for example, is much different from the data used to populate a browsable user interface for clinicians. To
address these challenges, we created KG-COVID-19, a flexible framework that ingests and integrates hetero-
geneous biomedical data to produce knowledge graphs (KGs), and applied it to create a KG for COVID-19
response. This KG framework also can be applied to other problems in which siloed biomedical data must
be quickly integrated for different research applications, including future pandemics.

INTRODUCTION

Although most coronaviruses typically cause common-cold

symptoms in humans, three betacoronaviruses have emerged

in the past few decades that can cause a range of serious man-

ifestations, including pneumonia and death: the severe acute

respiratory syndrome (SARS) coronavirus (SARS-CoV-1), the

Middle East respiratory syndrome coronavirus (MERS-CoV),

and the novel betacoronavirus that emerged in late 2019, subse-

quently named SARS-CoV-2, the agent of the disease COVID-

19.1 The rapid spread of SARS-CoV-2 has led to a global

pandemic.

THE BIGGER PICTURE An effective response to the COVID-19 pandemic relies on integration of many
different types of data available about SARS-CoV-2 and related viruses. KG-COVID-19 is a framework for
producing knowledge graphs that can be customized for downstream applications including machine
learning tasks, hypothesis-based querying, and browsable user interface to enable researchers to explore
COVID-19 data and discover relationships.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
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COVID-19 is a complex disease involving many biological pro-

cesses and pathways, each of which involves many genes. Initial

symptoms of COVID-19 typically include fever, cough, fatigue,

anorexia, anosmia, myalgia, and diarrhea. In some patients, se-

vere illness ensues roughly 1 week after the initial onset of

symptoms, and can present with rapidly progressive respiratory

failure.2 In addition to the symptoms highlighted, COVID-19 in-

fections can lead to secondary health problems, such as blood

clots,3 tissue necrosis, organ damage, and, in some cases, car-

diac failure. Given that the research community is still learning

about COVID-19, understanding its symptoms and their underly-

ing pathological mechanisms, which are still being uncovered, is

of vital importance.

Many possible treatments for different aspects and stages of

COVID-19 are being actively pursued. Evidence suggests that

remdesivir (DrugBank: DB14761), a broad-spectrum antiviral

medication, can shorten the time to recovery in adults hospital-

ized with COVID-19 infection and pneumonia (though the effect

is not statistically significant)4 and more recent evidence

suggests that dexamethasone (DrugBank:DB01234), a cortico-

steroid that suppresses inflammation, may reduce mortality in

patients with severe COVID-19.5 However, currently no treat-

ment is available to prevent progression of COVID-19 to severe

disease, and our knowledge of the causes and optimal medical

management of the symptoms and resulting clinical complica-

tions of COVID-19 are limited.

A large amount of biomedical andmolecular data are available

to aid the massive research effort to address the COVID-19

pandemic. Before the pandemic began, there existed a large

amount of biomedical data for coronaviruses other than SARS-

CoV-2 (SARS-CoV and MERS-CoV6 as well as many other path-

ogenic and non-pathogenic coronaviruses), such as viral

genome and transcriptome sequences, viral/host gene interac-

tions, gene function, epidemiological data, and clinical case

data. Much of this information is now also available for SARS-

CoV-2. In addition, there is also a large amount of data about

drugs that may offer a treatment for COVID-19, as well as the

protein targets for each drug.

However, researchers are confronted with a number of tech-

nical challenges when trying to use existing data to discover

actionable knowledge about COVID-19. The data needed to

address a given question are typically isolated in different data-

bases and use different identifiers. These data sources are also

often stored in different formats, requiring transformation or pre-

processing in order to serve the task at hand. For example, to

examine the function of proteins targeted by Food and Drug

Administration (FDA)-approved antiviral drugs, one must down-

load and integrate drug, drug target, and FDA approval status

data from, for example, Drug Central in a custom-made TSV

format7 and functional annotations from, for example, Gene

Ontology in GPAD format.8 Furthermore, many datasets are up-

dated periodically, which requires researchers to re-download

and re-process data in order to perform their analysis on the

most current data.

To tackle the daunting challenge of bringing together these

disparate sources of information and extracting useful knowl-

edge from them, we used knowledge graphs (KGs). KGs are a

way to represent and integrate heterogeneous data and their in-

terrelationships. In a KG, discrete entities or pieces of informa-

tion form distinct nodes interconnected by edges, where both

nodes and edges are typed using a hierarchical system such

as an ontology.9

For example, nodes of type ‘‘protein’’ representing individual

entities (such as human ACE2 or SARS-CoV-2 Spike) can be in-

terconnected via edges of type ‘‘orthologous to’’ or ‘‘interacts

with,’’ and these nodes can be connected with other kinds of no-

des representing diseases, drugs, and so on. This kind of repre-

sentation is amenable to complex queries (e.g., ‘‘which drugs

target a host protein that interacts with a viral protein?’’), and

also to graph-based machine learning techniques.

Related Work
Therehavebeena fewparallel efforts toconstructKGs to integrate

COVID-19 data, each integrating different data sources and con-

structed for different purposes. Several efforts have constructed

KGs by ingesting and transforming scientific literature10 (https://

lg-covid-19-hotp.cs.duke.edu/), somewith a few additional types

of data also included, such as confirmed case and mortality data

(https://github.com/covidgraph/); clinical information, drug trial,

and sequencing data (https://www.wikidata.org/wiki/

Wikidata:WikiProject_COVID-19); drug, drug trial, and genome

sequence data (https://ds-covid19.res.ibm.com/); diseases,

chemicals, and genes.11 Other KG efforts ingest a wider array of

data, including diseases, genes, proteins and their structural

data, drugs, and drug side effects;12 pathways, proteins, genes,

drugs, diseases, anatomic terms, phenotypes, microbiome

(https://spoke.ucsf.edu/); genes, proteins, diseases, phenotypes,

genome sequences13 (https://knetminer.com/); and geographic,

viral genes, genes, and proteins (https://github.com/sbl-sdsc/

coronavirus-knowledge-graph). Several projects have focused

specifically on integrating a wide variety of COVID-19 data to

create KGs to investigate drug repurposing14,15,16 (https://

github.com/gnn4dr/DRKG). The effort described here is unique

in that it allows users to more flexibly remix specific data types

from specific data sources (by virtue of its use of the KGX tool), it

integrates more tightly with ontologies (Human Phenotype

Ontology [HPO],Mondo,andGeneOntology [GO]) andwithdown-

stream machine learning tools (i.e., Embiggen), it offers a more

detailed summary of the contents of its KG in a machine readable

format, it covers a wider range of input data sources, and it auto-

matically incorporates new and updated data.

Here, we present a comprehensive COVID-19 KG derived

from 13 knowledge sources and containing 377,482 nodes and

21,433,063 edges. The KG is freely available for download at

https://kg-hub.berkeleybop.io/kg-covid-19/, and the framework

to produce the KG is freely available at https://github.com/

Knowledge-Graph-Hub/kg-covid-19. The knowledge graph

was constructed using modern ontology best practices whereby

different data sourceswere normalized andmerged. KG-COVID-

19 allows flexible remixing of component subgraphs for users

interested in specific areas. We demonstrate several use cases

including graph-based machine learning.

RESULTS

The KG-COVID-19 Framework
We created KG-COVID-19 to address the challenge of inte-

grating data for COVID-19 response. KG-COVID-19 is a
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framework that enables the creation of customized KGs contain-

ing COVID-19 knowledge for different applications. For example,

a drug repurposing application would make use of protein data

linked with approved drugs, while a biomarker application could

use data on gene expression linked with pathways. The method-

ology is not limited to COVID-19, but could support data

integration for any biomedical research effort. In addition, KG-

COVID-19 was designed to use a wide variety of human and

non-human data resources in order to model important relation-

ships and processes underlying human disease mechanisms.

For example, in order to model host response factors in humans,

it is necessary to also include mechanisms of virology and

viral genes.

Constructing the Knowledge Graph
Our process for generating the KG was designed to support

interoperability, preserve provenance, and provide the ability to

flexibly mix andmatch data from different sources. The workflow

is divided into three steps: data download (fetch the input data),

transform (convert the input data to KGX interchange format),

and merge (combine all transformed sources) (Figure 1).

The download step retrieves data from multiple sources using

a YAML file that specifies the source URLs (Figure 1A). Our expe-

rience has shown that this step is a frequent point of failure in

many extract, transform, and load (ETL) pipelines and separating

out this step helps mitigate this issue.

The data sources we ingest are focused on our use case: drug

repurposing (e.g., drug and drug target data, protein interaction

data, ontologies important in disease, such as the HPO and the

Mondo disease ontology). However, we also ingest data sources

that our user community requests by opening tickets on our proj-

ect GitHub page (https://github.com/Knowledge-Graph-Hub/

kg-covid-19).

The transform step (Figure 1B) involves parsing the input files

and transforming them to a graph-based representation. We

have devised a simple yet expressive format called KGX inter-

change format:https://github.com/NCATS-Tangerine/kgx/blob/

master/data-preparation.md

a serialization (i.e., the process of converting an object into a

format, usually text, that can be re-created when needed) for

representing a graph that combines features of Resource

Description Framework (RDF) and property graphs (i.e., simpli-

fied graphical representations consisting of sets of nodes and

edges containing key-value pairs). KGX interchange format con-

sists of two tabular files, one for representing graph nodes and

their properties, the other for representing edges and their prop-

erties (Figure 2). The format itself is a specialized TSVwith certain

guidelines on how to represent nodes and edges in a graph.

Figure 1. The KG-COVID-19 Framework for Producing KGs

The framework is divided into three modular steps: download, transform, and merge.

(A) The download step retrieves all datasets needed for ingestion using a set of URLs specified in a YAML file.

(B) The transform step applies Python code that is specific to each source to transform the most useful elements of each source and emit a graph in TSV format.

(C) Themerge step uses a YAML file to read the user-specified datasets (among those produced in the transform step) andmerge them into a single KG. Different

YAML files can be constructed to mix and match different input data from B, but each merge operation yields a single merged graph. Both the transform and

merge steps rely heavily on KGX, a powerful tool for manipulating knowledge graphs (https://github.com/NCATS-Tangerine/kgx).
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Using standards from the Semantic Web, nodes in the graph are

identified by Compact Uniform Resource Identifiers (CURIEs).17

These can be expanded to an Information Resource Identifier

(IRI), which is the global identifier for this node. All nodes are as-

signed a type using the ‘‘category’’ node property, and all edges

are typed using the ‘‘edge_label’’ property. Where possible, one

can use classes from the Biolink Model (https://biolink.github.io/

biolink-model), a high-level data model for representing biolog-

ical and biomedical knowledge. Granular typing of nodes is

possible by adding additional classes to the ‘‘category’’ prop-

erty. Granular typing of edges is possible by adding a more spe-

cific relation to the ‘‘relation’’ property. For example, one can use

a class from the Relation Ontology (RO) (https://github.com/

oborel/obo-relations) to further classify the semantics of

an edge.

The merge step (Figure 1C) combines the component data-

sets into a KG. The merging of two or more graphs is per-

formed by the KGX tool where nodes that have identical CU-

RIEs and edges that have the same source node, edge type,

and target node are merged together. When nodes and edges

from two different sources do have conflicting properties, we

ensure that the properties are preserved. For example, If two

nodes had conflicting values for the same property, then we

convert the type of the property to a list and keep track of

both the values where the order of the list signifies the direc-

tionality of the merge. This step is informed by a YAML file

that specifies what datasets should be included, to allow for

flexible remixing of subgraphs. In addition to selecting different

component datasets to be merged, the user can also filter no-

des and edges from each source by the node ‘‘category’’ and

‘‘edge_label,’’ allowing fine-grained control of the resulting

graph. By default, all nodes and edges from all component da-

tasets are merged. Optionally, the merged graph can be loaded

into any triple/RDF store or Neo4j database.

Figure 2. A Typical Transformation of Records from an Input File into Entries in a nodes.tsv and edges.tsv File Representing the Nodes and

Edge in a Graph

These nodes and the edge can be further transformed into RDF triples.

ll
OPEN ACCESS Article

4 Patterns 2, 100155, January 8, 2021

https://biolink.github.io/biolink-model
https://biolink.github.io/biolink-model
https://github.com/oborel/obo-relations
https://github.com/oborel/obo-relations


Design Principles
While our framework offers flexibility in deciding how best to

transform each data source, KG-COVID-19 follows some gen-

eral design principles to maintain the quality of the resulting KG.

Ensure Reproducibility

Our framework is designed to allow users to easily reproduce the

KGs used in downstream analysis. The download and transform

steps save all ingested data and the transformed data locally after

running the pipeline to produce a KG. In addition, we provide pre-

built versions of our KG (https://kg-hub.berkeleybop.io/kg-covid-

19/). A new build is constructed each month, and also whenever

changes are made to the code in the KG-COVID-19 framework.

Each build contains the date the build was constructed, the exact

commands that were run to produce the KG, the input data that

was ingested, the transformed subgraphs for each source,

detailed statistics about the contents of the build, and the KG itself

in RDF, KGX TSV, and Blazegraph journal format.

Ensure Interoperability Through Standardized Node and

Edge Representations

We use a core set of standardized ontologies and the Biolink

Model (https://biolink.github.io/biolink-model), a biological data

model for categorizing nodes and edges, to facilitate interopera-

bility and data summarization. To ensure Biolink Model compli-

ance, a Biolink category and a Biolink predicate are required

for the categorization of nodes and edges, respectively. Since

Biolink predicates are typically very broad in scope, the edge

can be further categorized by adding amore specific description

in the ‘‘relation’’ property using a term from the RO.18 Categori-

zation using ontologies and the Biolink Model provides a conve-

nient way to assess what types of data have been ingested from

each source, record provenance information, and also facilitates

interoperability with other transformed datasets.

Ingest Only Relevant Data

Only the subset of features in each dataset that are likely to be

useful for downstream applications are preserved, and only state-

ments for authoritative or trusted sources are ingested (for

example, assertions about protein interactions are not ingested

from a drug database, a trusted resource like the IntAct Molecular

Interaction Database would be preferred for protein interactions).

Normalize Identifiers at the Time of Ingest

Identifier (ID) normalization is crucial for ensuring connectedness

and the utility of the graph.

We refer to the Biolink Model to provide the preferential order

of identifier prefixes to be used for a particular Biolink class. For

example, in the case of Gene class (https://biolink.github.io/

biolink-model/docs/Gene), the model prescribes HUGO Gene

Nomenclature Committee (HGNC), NCBIGene, ENSEMBL,

where the order of prefixes matters: identifiers from HGNC

namespace are given a higher priority than NCBIGene and EN-

SEMBL. In the case of Protein class, the model prescribes Uni-

ProtKB identifiers. For drugs and other chemical compounds,

the model recommends the following: CHEBI, CHEMBL, Drug-

Bank, PubChem. Identifiers can also be normalized by adding

cross-references to other identifiers in the ‘‘xrefs’’ property of no-

des, which is the ‘‘xrefs’’ column in the KGX interchange format

TSV describing the nodes.

Preserve Provenance

Each ingest adds a ‘‘provided_by’’ column in the edge TSV file,

which ensures that graphs into which the data are merged (Fig-

ure 1C) contain a record of which ingest produced each edge.

The preservation of all files used to generate the graph in the

download step (Figure 1A) makes it possible to trace each

node and edge to the entries in the input file that generated

them. PubMed IDs are added to the ‘‘publication’’ column, where

available, to provide additional provenance.

Downstream Tooling for Querying and Machine
Learning
The KG-COVID-19 framework contains tooling for common

graph operations. The framework can create training and test

datasets in graph form for machine learning applications such

as training classifiers or regressors for link prediction (see Exper-

imental Procedures). It also includes a query function that can

execute prewritten or custom SPARQL queries on a given

SPARQL endpoint (by default, our endpoint: http://kg-hub-rdf.

berkeleybop.io/blazegraph/#query).

Current Contents of KG-COVID-19
A schematic diagram of all data sources currently ingested is

shown in Figure 3. The Sankey plot in Figure 3 provides insight

into the distribution of node and edge types and the connections

between nodes in a KG, which is useful for verifying the accuracy

of a KG build. The data we ingest are focused on sources rele-

vant to drug repurposing for our downstream querying and ma-

chine learning applications, prioritizing drug databases, protein

interaction databases, protein function annotations, COVID-19

literature, and related ontologies. The KG contains drug and

chemical compound data from several databases, currently

DrugCentral,19 the Pharmacogenomics Knowledgebase

(PharmGKB),20 Therapeutic Target Database (TTD),21 and

ChEMBL;22 functional annotations and synonyms for coronavi-

rus genes and proteins from the GO; and protein interaction

data from STRING23 and the IntAct Molecular Interaction Data-

base.24 The IntAct protein interaction dataset contains coronavi-

rus-human protein interaction data taken from 152 COVID-19

publications. We ingest data about COVID-19 scientific publica-

tions to identify instances of concepts such as GO terms, Uni-

Prot Knowledgebase (UniProtKB) proteins, National Center for

Biotechnology Information (NCBI) and HGNC genes, and

ChEMBL IDs via SciBite annotations (https://github.com/

SciBiteLabs/CORD19) of the COVID-19 Open Research Dataset

(CORD-19).25 To capture ontology-based annotations, the rela-

tional graphs for the GO,8 HPO,26 and Mondo Disease

Ontology27 are ingested, and annotations are added to the graph

as provided by each ingest (https://github.com/Knowledge-

Graph-Hub/kg-covid-19/wiki). In addition, we ingest GO Causal

Activity Models (GO-CAM) models that capture biological sys-

tems such as protein pathways, including those important in

SARS-CoV-2 infection.28

Use Cases
While we designed KG-COVID-19 to allow flexible reuse and re-

mixing of data to produce custom KGs, our immediate use case

is to provide a COVID-19 KG that can be used for machine

learning to produce actionable knowledge about COVID-19 (Fig-

ure 4). This use case demonstrates several features of KG-

COVID-19, namely: normalization and merging of disparate

data sources with different namespaces and formats, flexible
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remixing of component subgraphs, and a regular update cycle to

keep up with new knowledge. We follow the workflow described

in Figure 1 to produce the KG-COVID-19 KG. From the final

merged graph, KG-COVID-19 produces training and test data-

sets suitable formachine learning applications (see Experimental

Procedures). Embiggen (unpublished data), our implementation

of node2vec and related machine learning algorithms, is applied

to this KG to generate embeddings, vectors in a low dimensional

space which capture the relationships in the KG. Embiggen is

trained iteratively to identify optimal node2vec hyperparameters

(walk length, number of walks, p, q , and so forth) and to then

train classifiers (e.g., logistic regression, random forest, support

vector machines) that can be used for link prediction. The trained

classifiers can then be applied to produce actionable knowl-

edge: drug to disease links, drug to gene links, and drug to pro-

tein links. The latter would indicate a drug that might be useful for

COVID-19 treatment.

To demonstrate the usefulness of KG-COVID-19 for machine

learning applications, we created embeddings for nodes and

edges from the KG-COVID-19 KG and visualized the embeddings

in two dimensions using a t-SNE plot (Figure 6). While only the

graph structure and no biological typing of nodes was used to

generate the embeddings, the nodes of the same type appear to

be located closer to each other when projected into latent space

than nodes of differing biological types (i.e., genes are closer to

other genes than they are to drugs) a phenomenon that is often

observed inhierarchically structureddata29anda feature forwhich

t-SNEs are known.30 This indicates that the embeddings encode

biological information that can be used for machine learning.

While the initial development of KG-COVID-19 has focused on

our machine learning applications, other use cases have

emerged. As part of the National Virtual Biotechnology Labora-

tory (NVBL), we have found it useful to perform hypothesis-

based querying of the KG to identify viral and human proteins

that make attractive drug targets.31 For example, we have

queried the KG to retrieve from our KG host proteins that are

known to interact with viral proteins, and these are further filtered

according to whether these host proteins are targets of

approved drugs (Figure 5). These data are further analyzed

with downstream analyses to assess their suitability for drug re-

purposing. Our KG is also part of a federated query used by the

NVBL to collate and share up-to-date information related to

COVID-19 and SARS-CoV-2. In addition, the National COVID

Cohort Collaborative (N3C) has incorporated our KG as an

Figure 3. Schematic Representation of the Data Currently Ingested into the KG-COVID-19 Knowledge Graph

(Top) Polygons shown correspond to the various data sources currently ingested into the KG, and the small colored circles indicate the data types ingested from

this source. (Bottom) Sankey plot showing the Biolink categories for edges in the KG-COVID-19 graph. Left and middle columns show Biolink categories for

edges, right column indicates the source of the data from which the edges were derived. Line widths are proportional to the number of edges.

Figure 4. Workflow for Machine Learning Application of KG-COVID-19 Knowledge Graph

(A) In order to train classifiers for use in link prediction, training and test graphs are first produced from the original KG-COVID-19 graph (see Experimental

Procedures). These graphs are used by Embiggen to generate random walks, embeddings, and finally a classifier. The test graphs are used to assess the

performance of the classifier. This step is performed iteratively in order to identify optimal hyperparameters.

(B) The classifiers are applied to the KG-COVID-19 to perform link prediction in order to identify links that correspond to actionable knowledge: for example, links

between drugs and the COVID-19 disease, links between drugs and SARS-CoV-2 protein targets, and links between drugs and host proteins that are involved in

COVID-19 disease processes.
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ontologically informed way to combine their clinical datasets (by

virtue of our integration with GO, HPO, and Mondo). The N3C

also uses our KG to incorporate all of our transformed and

harmonized data, saving them the onerous task of collecting

and integrating all of those data sources individually.

DISCUSSION

A ‘‘KG-hub’’ Pattern for Data Sharing
The idea behind a KG-Hub is to provide a platform for building

and exchanging knowledge graphs by following a set of guide-

lines and design principles (https://knowledge-graph-hub.

github.io/) that facilitates interoperability and reproducibility.

The goal of a KG-Hub is to serve as a collective resource to

simplify the process of generating biological and biomedical

KGs and thus reducing the barrier for entry to new participants.

It also serves as a central resource to enable discovery and ex-

change of KGs. KG-Hub is designed to be an open-source com-

munity-supported resource. We are committed to maintaining

this resource and welcome new national and international

collaborations to help support this work. Our KG-COVID-19

framework adopts KG-Hub design principles and thus can be

considered as the first instance of KG-Hub.

ID Normalization Challenges for SARS-CoV-2 Entities
Since the usefulness of a KG depends on its connectedness, ID

normalization is crucial. Normalization of IDs for SARS-CoV-2

entities in particular is challenging, for several reasons. First,

SARS-CoV-2 produces identical cleavage products from

different polyproteins, and UniProt assigns a different ID to

each of these identical cleavage products. For example, UniProt

uses PRO_0000338259 to identify the cleavage product nsp5,

the 3C-like protease, if it is cleaved from replicase polyprotein

1a, and PRO_0000449623 if it is cleaved from replicase polypro-

tein 1ab. Protein Ontology, in contrast, uses PR_000050274, ir-

respective of the polyprotein from which it was cleaved. Note

that the UniProt ‘‘PRO_’’ prefix is unrelated to the Protein

Ontology namespace. For our KG, it is crucial that identical pro-

teins be represented with a single node such that other informa-

tion can be efficiently linked to them. We arbitrarily chose

PRO_0000449623 as the ID to represent this cleavage product,

and all other IDs for this cleavage product are stored as cross-

references for this node in our KG. Second, each cleavage prod-

uct can have a large number of synonyms. For example, nsp5

has at least 40 synonyms that are used in the literature (e.g.,

3CL-PRO, 3CLp, Mpro, 3C-like proteinase). Furthermore,

some synonyms (e.g., ‘‘S’’ for spike protein) are difficult to

recognize when applying NLP to SARS-CoV-2 literature, which

represents a further challenge for computationally identifying

the occurrences of such entities in text. We have compiled our

canonical IDs, synonyms, and cross-references for each

SARS-CoV-2 protein and cleavage product in our KG in a pub-

licly available file in GPI format: https://github.com/Knowledge-

Graph-Hub/kg-covid-19/blob/master/curated/ORFs/uniprot_

sars-cov-2.gpi.

Conclusion
KGs provide a way of integrating heterogeneous data from

different sources and combining different data modalities.

KG-COVID-19 generates a KG for COVID-19 focused around

molecular and chemical information, enabling users to

conduct complex queries over relevant biological entities as

well as machine learning analyses to generate graph embed-

dings for making predictions. The lightweight framework we

have developed provides a rapid route for bringing together

new sources of data and knowledge, including KGs from

several different sources, to form a "hub" to support COVID

response efforts.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Justin Reese, justinreese@lbl.gov, https://orcid.org/0000-0002-2170-2250.

Materials Availability

This study did not generate any physical material.

Figure 5. Hypothesis-Based Querying of KG-COVID-19 Knowledge Graph for Using SPARQL Queries

(Top) An SPARQL query retrieves approved drugs that target human proteins that physically interact with SARS-CoV-2 protein. (Bottom) An SPARQL query

retrieves approved drugs that target human proteins that physically interact indirectly with SARS-CoV-2 through another human protein. The suitability of these

drugs for repositioning are evaluated by NVBL collaborators, for example by analyzing available structural data to support repositioning.
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Data and Code Availability

The Python code for KG-COVID-19 is available from the project wiki: https://

github.com/Knowledge-Graph-Hub/kg-covid-19/wiki.https://github.com/

Knowledge-Graph-Hub/kg-covid-19/wiki

The Python code is distributed under a BSD3 license.

The KG-COVID-19 KG containing all data sources (in RDF and TSV format) is

freely available at: https://kg-hub.berkeleybop.io/kg-covid-19/

An SPARQL endpoint is here:http://kg-hub-rdf.berkeleybop.io/blazegraph/

#query.

KG Generation Pipeline

The framework to produce our KG is essentially an ETL system with additional

tooling to facilitate downstream uses (e.g., to produce subgraphs for machine

learning training, run SPARQL queries). To ensure that the code remains func-

tional and to detect breaking changes in data from upstream sources, we run

our pipeline and unit tests regularly using a continuous integration system

(https://www.jenkins.io/). This pipeline emits a KG that integrates all available

data sources, in both TSV and RDF format, and also loads this KG into a Blaze-

graph database. A YAML file containing an inventory of the Biolink categories

andBiolink associations of all data in the KG is also produced during themerge

step (Figure 1). On a commodity server with 200 GB of memory, generation of

the KG containing all source data requires a total of 3.7 h (0.13 h, 1.5 h, and

2.1 h for the download, transform, and merge step, respectively), with a

peak memory usage of 34.4 GB and disk use of 37 GB.

Generation of Training and Test Edges for Machine Learning

Applications

To generate positive edges, a set of positive test edges equal in number to [(1 -

train_fraction) * number of edges in input graph] is selected from the edges in

the input graph, where train_fraction is a number between 0 and 1 indicating

the fraction of the graph to use for training. Positive test edges are selected

such that removing them from the graph would not break it into disjoint com-

ponents. These positive edges are removed from the edges of the input graph

and are then emitted as the training edges. A set of negative edges is con-

structed by randomly selecting pairs of nodes that are not connected by an

edge in the input graph. The number of negative edges emitted is equal to

the number of positive edges emitted above. If the user requests a validation

set, the positive test edges are divided equally to yield positive test and valida-

tion sets, and negative test edges are divided equally to yield negative test and

validation sets.

Embeddings and t-SNE Plot for Knowledge Graph Visualization

Wegenerated embeddings from our KG using Embiggen, our Python library for

graph embedding and machine learning, using node2vec with a skip-gram

model, 128 embedding dimensions, and parameters p and q of 1 (which are

typically used default parameters for node2vec).32 Embiggen is freely available

at https://github.com/monarch-initiative/embiggen. These embeddings were

used to generate a t-SNE plot that represents the embeddings for each

node in two-dimensional space, using MulticoreTSNE (https://github.com/

DmitryUlyanov/Multicore-TSNE) (Figure 6).

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100155.
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Source Description Version 
currently 
ingested 

File format 

SciBite-CORD-1
9 

Occurrence in the COVID-19 
literature of various terms of 

biological interest, including MeSH 
terms, GO terms, NCBI gene IDs, 

HPO terms 

V1.5 zip, XML 

ChEMBL  Antiviral subset of 
drugs/compounds relevant to 
COVID-19 as determined by 

ChEMBL 

ChEMBL 27 
(Ingested from 
ChEMBL API) 

json 

Drug Central Drug and drug target data Version dated 
May 20, 2020 

zip, TSV 

TTD Drug and drug target data Version 7.1.01 
(2019.07.14) 

txt 

PharmGKB Drug and drug target data Version dated 
2020-09-05 

zip, TSV 

GO-CAM 
models 

Protein pathway information Version from 
2020-06-19 

XML 

GO-plus Gene ontology 2020-09-10 
release 

json (OBO-json 
format) 

HPO Human phenotype ontology 2020-08-11 
release 

json (OBO-json 
format) 

Mondo Disease ontology 2020-09-14 
release 

json (OBO-json 
format) 

CHEBI Chemical ontology ChEBI release 
version 191 

json (OBO-json 
format) 

UniProt Gene/protein data and annotations 
for SARS-CoV-2 

Version dated 
2020-09-03 

gpa, gpi 

STRING protein-protein interaction data V11 txt 

IntAct protein-protein interaction data 
(SARS-CoV-2 specific) 

2020-09-26 
release 

XML (miXML 
format) 

zhou_host_prot
eins 

Protein-protein interaction data from 
"Network-based drug repurposing 

for novel coronavirus 

Ingested from 
publication 

pdf 



2019-nCoV/SARS-CoV-2"(Zhou et 
al., 2020) 

 

Supplement Table 1. Summary of data sources currently ingested by KG-COVID-19. For each 

source, version/date information for the currently ingested data is also shown. An up-to-date list 

of URLs from which the data can be downloaded is available at: 

https://github.com/Knowledge-Graph-Hub/kg-covid-19/blob/master/download.yaml 

https://paperpile.com/c/LlRmki/7EpU
https://paperpile.com/c/LlRmki/7EpU
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