1,039 research outputs found
Disformal invariance of continuous media with linear equation of state
We show that the effective theory describing single component continuous
media with a linear and constant equation of state of the form is
invariant under a 1-parameter family of continuous disformal transformations.
In the special case of (ultrarelativistic gas), such a family reduces
to conformal transformations. As examples, perfect fluids, homogeneous and
isotropic solids are discussed.Comment: latex, 7 page
High-Resolution Simulations of Cosmic Microwave Background non-Gaussian Maps in Spherical Coordinates
We describe a new numerical algorithm to obtain high-resolution simulated
maps of the Cosmic Microwave Background (CMB), for a broad class of
non-Gaussian models. The kind of non-Gaussianity we account for is based on the
simple idea that the primordial gravitational potential is obtained by a
non-linear but local mapping from an underlying Gaussian random field, as
resulting from a variety of inflationary models. Our technique, which is based
on a direct realization of the potential in spherical coordinates and fully
accounts for the radiation transfer function, allows to simulate non-Gaussian
CMB maps down to the Planck resolution (), with
reasonable memory storage and computational time.Comment: 9 pages, 5 figures. Submitted to ApJ. A version with higher quality
figures is available at http://www.pd.infn.it/~liguori/content.htm
Living with ghosts in Horava-Lifshitz gravity
We consider the branch of the projectable Horava-Lifshitz model which
exhibits ghost instabilities in the low energy limit. It turns out that, due to
the Lorentz violating structure of the model and to the presence of a finite
strong coupling scale, the vacuum decay rate into photons is tiny in a wide
range of phenomenologically acceptable parameters. The strong coupling scale,
understood as a cutoff on ghosts' spatial momenta, can be raised up to TeV. At lower momenta, the projectable Horava-Lifshitz gravity is
equivalent to General Relativity supplemented by a fluid with a small positive
sound speed squared () , that could
be a promising candidate for the Dark Matter. Despite these advantages, the
unavoidable presence of the strong coupling obscures the implementation of the
original Horava's proposal on quantum gravity. Apart from the Horava-Lifshitz
model, conclusions of the present work hold also for the mimetic matter
scenario, where the analogue of the projectability condition is achieved by a
non-invertible conformal transformation of the metric.Comment: 33 pages, 1 figure. The proof of an equivalence between the IR limit
of the projectable Horava-Lifshitz gravity and the mimetic matter scenario is
given in Appendix A. Version accepted for publication in JHE
Tests for primordial non-Gaussianity
We investigate the relative sensitivities of several tests for deviations
from Gaussianity in the primordial distribution of density perturbations. We
consider models for non-Gaussianity that mimic that which comes from inflation
as well as that which comes from topological defects. The tests we consider
involve the cosmic microwave background (CMB), large-scale structure (LSS),
high-redshift galaxies, and the abundances and properties of clusters. We find
that the CMB is superior at finding non-Gaussianity in the primordial
gravitational potential (as inflation would produce), while observations of
high-redshift galaxies are much better suited to find non-Gaussianity that
resembles that expected from topological defects. We derive a simple expression
that relates the abundance of high-redshift objects in non-Gaussian models to
the primordial skewness.Comment: 6 pages, 2 figures, MNRAS in press (minor changes to match the
accepted version
ParamagneticâResonance Absorption of Ions with Spin 5/2: Mn++ in Calcite
The theory of the paramagneticâresonance absorption of ions with S = S=52 in crystalline fields of trigonal symmetry is presented. The case of manganous ions in calcite (CaCO3) is taken as an example. It is shown that the splitting of the fineâstructure satellites into doublets first reported by Hurd, Sachs, and Hershberger [Phys. Rev. 93, 373 (1954)] can be accounted for by assuming that the manganous ions can occupy the two nonequivalent Ca++ sites at random. The maximum splitting was measured at X band and K band and found to be 19.3±0.5 gauss. The value computed from the theory, assuming an ionic model, is 23.8 gauss. In addition, five pairs of weak lines were found, each pair occurring midway between adjacent hyperfine groups. The origin of these lines is uncertain. The applicability of the present theory to Al2O3:Fe, a zeroâfield maser material, and to the photosensitive Fe+++ center in CdS is pointed out.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71145/2/JCPSA6-33-2-601-1.pd
A numerical study of the effects of primordial non-Gaussianities on weak lensing statistics
While usually cosmological initial conditions are assumed to be Gaussian,
inflationary theories can predict a certain amount of primordial
non-Gaussianity which can have an impact on the statistical properties of the
lensing observables. In order to evaluate this effect, we build a large set of
realistic maps of different lensing quantities starting from light-cones
extracted from large dark-matter only N-body simulations with initial
conditions corresponding to different levels of primordial local
non-Gaussianity strength . Considering various statistical
quantities (PDF, power spectrum, shear in aperture, skewness and bispectrum) we
find that the effect produced by the presence of primordial non-Gaussianity is
relatively small, being of the order of few per cent for values of compatible with the present CMB constraints and reaching at most 10-15
per cent for the most extreme cases with . We also discuss
the degeneracy of this effect with the uncertainties due to the power spectrum
normalization and matter density parameter , finding
that an error in the determination of () of about 3
(10) per cent gives differences comparable with non-Gaussian models having
. These results suggest that the possible presence of an
amount of primordial non-Gaussianity corresponding to is not
hampering a robust determination of the main cosmological parameters in present
and future weak lensing surveys, while a positive detection of deviations from
the Gaussian hypothesis is possible only breaking the degeneracy with other
cosmological parameters and using data from deep surveys covering a large
fraction of the sky.Comment: accepted by MNRA
A Comment on the Path Integral Approach to Cosmological Perturbation Theory
It is pointed out that the exact renormalization group approach to
cosmological perturbation theory, proposed in Matarrese and Pietroni, JCAP 0706
(2007) 026, arXiv:astro-ph/0703563 and arXiv:astro-ph/0702653, constitutes a
misnomer. Rather, having instructively cast this classical problem into path
integral form, the evolution equation then derived comes about as a special
case of considering how the generating functional responds to variations of the
primordial power spectrum.Comment: 2 pages, v2: refs added, published in JCA
General Relativistic Dynamics of Irrotational Dust: Cosmological Implications
The non--linear dynamics of cosmological perturbations of an irrotational
collisionless fluid is analyzed within General Relativity. Relativistic and
Newtonian solutions are compared, stressing the different role of boundary
conditions in the two theories. Cosmological implications of relativistic
effects, already present at second order in perturbation theory, are studied
and the dynamical role of the magnetic part of the Weyl tensor is elucidated.Comment: 12 pages , DFPD 93/A/6
The mass density field in simulated non-Gaussian scenarios
In this work we study the properties of the mass density field in the
non-Gaussian world models simulated by Grossi et al. 2007. In particular we
focus on the one-point density probability distribution function of the mass
density field in non-Gausian models with quadratic non-linearities quantified
by the usual parameter f_NL. We find that the imprints of primordial
non-Gaussianity are well preserved in the negative tail of the probability
function during the evolution of the density perturbation. The effect is
already noticeable at redshifts as large as 4 and can be detected out to the
present epoch. At z=0 we find that the fraction of the volume occupied by
regions with underdensity delta < -0.9, typical of voids, is about 1.3 per cent
in the Gaussian case and increases to ~2.2 per cent if f_NL=-1000 while
decreases to ~0.5 per cent if f_NL=+1000. This result suggests that void-based
statistics may provide a powerful method to detect non-Gaussianity even at low
redshifts which is complementary to the measurements of the higher-order
moments of the probability distribution function like the skewness or the
kurtosis for which deviations from the Gaussian case are detected at the 25-50
per cent level.Comment: revised version, 9 Pages, 8 figures, MNRAS in pres
On the Physical Significance of Infra-red Corrections to Inflationary Observables
Inflationary observables, like the power spectrum, computed at one- and
higher-order loop level seem to be plagued by large infra-red corrections. In
this short note, we point out that these large infra-red corrections appear
only in quantities which are not directly observable. This is in agreement with
general expectations concerning infra-red effects.Comment: 11 pages; LateX file; 5 figures. Some coefficients in Eq.(A6)
corrected; References adde
- âŠ