127 research outputs found

    Predicting the clustering properties of galaxy clusters detectable for the Planck satellite

    Get PDF
    We study the clustering properties of the galaxy clusters detectable for the Planck satellite due to their thermal Sunyaev-Zel'dovich effect. We take the past light-cone effect and the redshift evolution of both the underlying dark matter correlation function and the cluster bias factor into account. A theoretical mass-temperature relation allows us to convert the sensitivity limit of a catalogue into a minimum mass for the dark matter haloes hosting the clusters. We confirm that the correlation length is an increasing function of the sensitivity limits defining the survey. Using the expected characteristics of the Planck cluster catalogue, which will be a quite large and unbiased sample, we predict the two-point correlation function and power spectrum for different cosmological models. We show that the wide redshift distribution of the Planck survey, will allow to constrain the cluster clustering properties up to z=1. The dependence of our results on the main cosmological parameters (the matter density parameter, the cosmological constant and the normalisation of the density power-spectrum) is extensively discussed. We find that the future Planck clustering data place only mild constraints on the cosmological parameters, because the results depend on the physical characteristics of the intracluster medium, like the baryon fraction and the mass-temperature relation. Once the cosmological model and the Hubble constant are determined, the clustering data will allow a determination of the baryon fraction with an accuracy of few per cent.Comment: 11 pages, MNRAS in press. Minor changes to match the accepted versio

    Counteraction of HCV-induced oxidative stress concurs to establish chronic infection in liver cell cultures

    Get PDF
    Hepatitis C virus (HCV) is a blood-borne pathogen causing acute and chronic hepatitis. A significant number of people chronically infected with HCV develop cirrhosis and/or liver cancer. The pathophysiologic mechanisms of hepatocyte damage associated with chronic HCV infection are not fully understood yet, mainly due to the lack of an in vitro system able to recapitulate the stages of infection in vivo. Several studies underline that HCV virus replication depends on redox-sensitive cellular pathways; in addition, it is known that virus itself induces alterations of the cellular redox state. However, the exact interplay between HCV replication and oxidative stress has not been elucidated. In particular, the role of reduced glutathione (GSH) in HCV replication and infection is still not clear. We set up an in vitro system, based on low m.o.i. of Huh7.5 cell line with a HCV infectious clone (J6/JFH1), that reproduced the acute and persistent phases of HCV infection up to 76 days of culture. We demonstrated that the acute phase of HCV infection is characterized by the elevated levels of reactive oxygen species (ROS) associated in part with an increase of NADPH-oxidase transcripts and activity and a depletion of GSH accompanied by high rates of viral replication and apoptotic cell death. Conversely, the chronic phase is characterized by a reestablishment of reduced environment due to a decreased ROS production and increased GSH content in infected cells that might concur to the establishment of viral persistence. Treatment with the prooxidant auranofin of the persistently infected cultures induced the increase of viral RNA titer, suggesting that a prooxidant state could favor the reactivation of HCV viral replication that in turn caused cell damage and death. Our results suggest that targeting the redox-sensitive host-cells pathways essential for viral replication and/or persistence may represent a promising option for contrasting HCV infection

    Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission.

    Get PDF
    Galectins have emerged as a novel family of immunoregulatory proteins implicated in T cell homeostasis. Recent studies showed that galectin-1 (Gal-1) plays a key role in tumor-immune escape by killing antitumor effector T cells. Here we found that Gal-1 sensitizes human resting T cells to Fas (CD95)/caspase-8-mediated cell death. Furthermore, this protein triggers an apoptotic program involving an increase of mitochondrial membrane potential and participation of the ceramide pathway. In addition, Gal-1 induces mitochondrial coalescence, budding, and fission accompanied by an increase and/or redistribution of fission-associated molecules h-Fis and DRP-1. Importantly, these changes are detected in both resting and activated human T cells, suggesting that Gal-1-induced cell death might become an excellent model to analyze the morphogenetic changes of mitochondria during the execution of cell death. This is the first association among Gal-1, Fas/Fas ligand-mediated cell death, and the mitochondrial pathway, providing a rational basis for the immunoregulatory properties of Gal-1 in experimental models of chronic inflammation and cancer.Fil: Matarrese, Paola. Istituto Superiore di Sanità; ItaliaFil: Tinari, Antonella. Istituto Superiore di Sanità; ItaliaFil: Mormone, Elisabetta. Istituto Superiore di Sanità; ItaliaFil: Bianco, German Ariel. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Toscano, Marta Alicia. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Ascione, Barbara. Istituto Superiore di Sanità; ItaliaFil: Rabinovich, Gabriel Adrián. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Malorni, Walter. Istituto Superiore di Sanità; Itali

    Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation

    Get PDF
    Mitochondria-associated membranes (MAMs) are subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. This membrane scrambling between ER and mitochondria appears to play a critical role in the earliest steps of autophagy. Recently, lipid microdomains, i.e. lipid rafts, have been identified as further actors of the autophagic process. In the present work, a series of biochemical and molecular analyses has been carried out in human fibroblasts with the specific aim of characterizing lipid rafts in MAMs and to decipher their possible implication in the autophagosome formation. In fact, the presence of lipid microdomains in MAMs has been detected and, in these structures, a molecular interaction of the ganglioside GD3, a paradigmatic “brick” of lipid rafts, with core-initiator proteins of autophagy, such as AMBRA1 and WIPI1, was revealed. This association seems thus to take place in the early phases of autophagic process in which MAMs have been hypothesized to play a key role. The functional activity of GD3 was suggested by the experiments carried out by knocking down ST8SIA1 gene expression, i.e., the synthase that leads to the ganglioside formation. This experimental condition results in fact in the impairment of the ER-mitochondria crosstalk and the subsequent hindering of autophagosome nucleation. We thus hypothesize that MAM raft-like microdomains could be pivotal in the initial organelle scrambling activity that finally leads to the formation of autophagosome. Introduction The interaction of the endoplasmic reticulum (ER) with mito- chondria occurs via certain subdomains of the ER, named mitochondria-associated membranes (MAMs), which allow membrane “scrambling” between these organelles and contrib- utes to the complex series of ER functions.1-3 Indeed, several regions of close apposition between the ER and mitochondria were detected by studies carried out several years ago.4,5 How- ever, since these studies provided only ultrastructural observa- tions, these reports remained neglected for a long time. In particular, while morphological evidence of the physical juxta- position between ER and mitochondria was described since 1959,6 it was experimentally proven only 30 y later. In fact, ana- lyzing ER fractions copurified with mitochondria in velocity sedimentation assays, mainly from rat liver cells, it was observed that mitochondria can tightly be associated with ele- ments of the ER and that the communication and intermixing between ER and mitochondria can be mediated by MAMs.7-12 These works also showed that these cosedimenting fractions were enriched in enzymes responsible for the synthesis of lipids. These findings suggested that MAMs could act as sites

    Mitochondria hyperpolarization is an early event in oxidized low-density lipoprotein-induced apoptosis in Caco-2 intestinal cells

    Get PDF
    AbstractWe investigated the mechanisms underlying the pro-apoptotic activity exerted by oxidized low-density lipoproteins (oxLDL) in Caco-2 intestinal cells, a cell line which retains many morphological and enzymatic features typical of normal human enterocytes. We found that: (i) oxLDL induced mitochondrial-mediated apoptosis by provoking first an increase in mitochondrial membrane potential, followed, later, by the typical apoptosis-associated depolarization (type II apoptosis); accordingly, (ii) caspase-9 inhibition significantly hindered apoptosis while caspase-8 inhibition did not; and finally (iii) dietary phenolic antioxidizing compounds exerted a significant protective antiapoptotic activity. These results point to mitochondrial hyperpolarization as ‘sensitizing feature’ in apoptotic proneness of Caco-2 intestinal cells to oxLDL exposure

    Sex differences in antiviral immunity in SARS-CoV-2 infection. Mitochondria and mitomiR come into view

    Get PDF
    Mitochondria are multifaceted organelles representing the ‘powerhouse of cells’ for their function as bioenergetics and biosynthetic hubs. In addition, they play an essential role in the regulation of innate and adaptive immune responses, including host defences against viruses, as well as in in- flammatory responses. This peculiar role of mitochondria is principally because of the activation of adaptor mitochon- drial proteins, known as mitochondrial antiviral signalling (MAVS) proteins. MAVS senses viral RNA and triggers the activation of the transcription factor NF-kB or IFN pathways and autophagy, in order to clear the infection and avoid exces- sive inflammation respectively

    Changes in membrane lipids drive increased endocytosis following Fas ligation

    Get PDF
    Once activated, some surface receptors promote membrane movements that open new portals of endocytosis, in part to facilitate the internalization of their activated complexes. The prototypic death receptor Fas (CD95/Apo1) promotes a wave of enhanced endocytosis that induces a transient intermixing of endosomes with mitochondria in cells that require mitochondria to amplify death signaling. This initiates a global alteration in membrane traffic that originates from changes in key membrane lipids occurring in the endoplasmic reticulum (ER). We have focused the current study on specific lipid changes occurring early after Fas ligation. We analyzed the interaction between endosomes and mitochondria in Jurkat T cells by nanospray-Time-of-flight (ToF) Mass Spectrometry. Immediately after Fas ligation, we found a transient wave of lipid changes that drives a subpopulation of early endosomes to merge with mitochondria. The earliest event appears to be a decrease of phosphatidylcholine (PC), linked to a metabolic switch enhancing phosphatidylinositol (PI) and phosphoinositides, which are crucial for the formation of vacuolar membranes and endocytosis. Lipid changes occur independently of caspase activation and appear to be exacerbated by caspase inhibition. Conversely, inhibition or compensation of PC deficiency attenuates endocytosis, endosome-mitochondria mixing and the induction of cell death. Deficiency of receptor interacting protein, RIP, also limits the specific changes in membrane lipids that are induced by Fas activation, with parallel reduction of endocytosis. Thus, Fas activation rapidly changes the interconversion of PC and PI, which then drives enhanced endocytosis, thus likely propagating death signaling from the cell surface to mitochondria and other organelles

    Single exposure of human fibroblasts (WI-38) to a sub-cytotoxic dose of UVB induces premature senescence

    Get PDF
    AbstractIn this work, we present a new model of stress-induced premature senescence obtained by exposing human fibroblasts (WI-38) at early passages (passages 2–4) to a single sub-cytotoxic dose of UVB (200mJ/cm2). We show that this treatment leads to the appearance of several biomarkers of senescence such as enlarged and flattened cell morphology, the presence of nuclear heterochromatic foci and β-galactosidase activity. Furthermore, we demonstrate that a mild ROS production and p53 activation are upstream events required for the induction of premature senescence. Our method represents an alternative in vitro model in photoaging research and could be used to test potential anti-photoaging compounds

    Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1), a Toxin That Activates the Rho GTPase

    Get PDF
    Cytotoxic necrotizing factor 1 (CNF1), a 110-kDa protein toxin from pathogenic Escherichia coli induces actin reorganization into stress fibers and retraction fibers in human epithelial cultured cells allowing them to spread. CNF1 is acting in the cytosol since microinjection of the toxin into HEp-2 cells mimics the effects of the externally applied CNF1. Incubation in vitro of CNF1 with recombinant small GTPases induces a modification of Rho (but not of Rac, Cdc42, Ras, or Rab6) as demonstrated by a discrete increase in the apparent molecular weight of the molecule. Preincubation of cells with CNF1 impairs the cytotoxic effects of Clostridium difficile toxin B, which inactivates Rho but not those of Clostridium sordellii LT toxin, which inhibits Ras and Rac. As shown for Rho-GTP, CNF1 activates, in a time- and dose-dependent manner, a cytoskeleton-associated phosphatidylinositol 4-phosphate 5-kinase. However, neither the phosphatidylinositol 4,5-bisphosphate (PIP2) nor the phosphatidylinositol 3,4-bisphosphate (PI 3,4-P2) or 3,4,5-trisphosphate (PIP3) cellular content were found increased in CNF1 treated HEp-2 cells. Cellular effects of CNF1 were not blocked by LY294002, a stable inhibitor of the phosphoinositide 3-kinase. Incubation of HEp-2 cells with CNF1 induces relocalization of myosin 2 in stress fibers but not in retraction fibers. Altogether, our data indicate that CNF1 is a toxin that selectively activates the Rho GTP-binding protein, thus inducing contractility and cell spreading

    Differential redox state contributes to sex disparities in the response to influenza virus infection in male and female mice

    Get PDF
    Influenza virus replicates intracellularly exploiting several pathways involved in the regulation of host responses. The outcome and the severity of the infection are thus strongly conditioned by multiple host factors, including age, sex, metabolic, and redox conditions of the target cells. Hormones are also important determinants of host immune responses to influenza and are recently proposed in the prophylaxis and treatment. This study shows that female mice are less susceptible than males to mouse-adapted influenza virus (A/PR8/H1N1). Compared with males, PR8-infected females display higher survival rate (+36%), milder clinical disease, and less weight loss. They also have milder histopathological signs, especially free alveolar area is higher than that in males, even if pro-inflammatory cytokine production shows slight differences between sexes; hormone levels, moreover, do not vary significantly with infection in our model. Importantly, viral loads (both in terms of viral M1 RNA copies and tissue culture infectious dose 50%) are lower in PR8-infected females. An analysis of the mechanisms contributing to sex disparities observed during infection reveals that the female animals have higher total antioxidant power in serum and their lungs are characterized by increase in (i) the content and biosynthesis of glutathione, (ii) the expression and activity of antioxidant enzymes (peroxiredoxin 1, catalase, and glutathione peroxidase), and (iii) the expression of the anti-apoptotic protein Bcl-2. By contrast, infected males are characterized by high expression of NADPH oxidase 4 oxidase and phosphorylation of p38 MAPK, both enzymes promoting viral replication. All these factors are critical for cell homeostasis and susceptibility to infection. Reappraisal of the importance of the host cell redox state and sex-related effects may be useful in the attempt to develop more tailored therapeutic interventions in the fight against influenza
    corecore