29 research outputs found

    Mitochondrial DNA, a Powerful Tool to Decipher Ancient Human Civilization from Domestication to Music, and to Uncover Historical Murder Cases

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Mitochondria are unique organelles carrying their own genetic material, independent from that in the nucleus. This review will discuss the nature of mitochondrial DNA (mtDNA) and its levels in the cell, which are the key elements to consider when trying to achieve molecular identification in ancient and degraded samples. mtDNA sequence analysis has been appropriately validated and is a consistent molecular target for the examination of biological evidence encountered in forensic cases-and profiling, in certain conditions-especially for burnt bodies and degraded samples of all types. Exceptional cases and samples will be discussed in this review, such as mtDNA from leather in Beethoven's grand piano, mtDNA in mummies, and solving famous historical criminal cases. In addition, this review will be discussing the use of ancient mtDNA to understand past human diet, to trace historical civilizations and ancient trade routes, and to uncover geographical domestication origins and lineage relationships. In each topic, we will present the power of mtDNA and how, in many cases, no nuclear DNA was left, leaving mitochondrial DNA analysis as a powerful alternative. Exploring this powerful tool further will be extremely useful to modern science and researchers, due to its capabilities in providing us with previously unattainable knowledge.Peer reviewedFinal Published versio

    Plant Flavonoids on Oxidative Stress-Mediated Kidney Inflammation

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Simple Summary: Increased stress is often observed in patients with kidney diseases, contributing to renal injury progression. Flavonoids are naturally occurring plant compounds with known health benefits, including antiapoptotic, anti-inflammatory, and antioxidant properties. Flavonoids can protect the kidney by improving antioxidant status, ameliorating excess reactive oxygen species levels, and acting as Nrf2-mediators in generating antioxidant responses in the body. Flavonoids also modulate inflammatory markers, exert anti-inflammatory effects, and protect the cells from apoptotic cell death in the kidney. Interestingly, few clinical trials have reported a direct correlation between a flavonoid-rich diet and better kidney disease prognosis. However, flavonoids have a low bioavailability in the body, making it essential to understand better their molecular mechanism of action. We suggest that a flavonoid-rich diet could have promising nephroprotective effects and beneficial outcomes in treating patients with kidney diseases. Abstract: The kidney is susceptible to reactive oxygen species-mediated cellular injury resulting in glomerulosclerosis, tubulointerstitial fibrosis, tubular cell apoptosis, and senescence, leading to renal failure, and is a significant cause of death worldwide. Oxidative stress-mediated inflammation is a key player in the pathophysiology of various renal injuries and diseases. Recently, flavonoids’ role in alleviating kidney diseases has been reported with an inverse correlation between dietary flavonoids and kidney injuries. Flavonoids are plant polyphenols possessing several health benefits and are distributed in plants from roots to leaves, flowers, and fruits. Dietary flavonoids have potent antioxidant and free-radical scavenging properties and play essential roles in disease prevention. Flavonoids exert a nephroprotective effect by improving antioxidant status, ameliorating excessive reactive oxygen species (ROS) levels, and reducing oxidative stress, by acting as Nrf2 antioxidant response mediators. Moreover, flavonoids play essential roles in reducing chemical toxicity. Several studies have demonstrated the effects of flavonoids in reducing oxidative stress, preventing DNA damage, reducing inflammatory cytokines, and inhibiting apoptosis-mediated cell death, thereby preventing or improving kidney injuries/diseases. This review covers the recent nephroprotective effects of flavonoids against oxidative stress-mediated inflammation in the kidney and their clinical advancements in renal therapy.Peer reviewe

    Overcoming bottlenecks in the membrane protein structural biology pipeline

    Get PDF
    Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future

    Characterization of a new generation of detergents stabilizing ABC transporters in solution : crystallization of BmrA, bacterial ABC transporter

    No full text
    En raison de leur résistance aux agents chimiothérapeutiques, les transporteurs ABC de phénotype MDR ont attiré l'attention de la communauté scientifique. Notre projet vise à trouver des conditions dans lesquelles les transporteurs ABC restent fonctionnels en solution pour aboutir à la cristallisation de ces protéines dans une conformation active. Dans ce but, nous avons conçu et développé une nouvelle classe de détergents, à base de calix[4]arène, qui stabilisent ces protéines. Afin de résoudre la structure 3D à résolution atomique du transporteur ABC bactérien "BmrA", responsable de la résistance aux antibiotiques, nous avons utilisé une approche classique utilisant des détergents commerciaux en parallèle à nos détergents innovants. En présence de la Foscholine 12, nous avons obtenu des cristaux diffractant jusqu’à 5 Å de résolution. Cependant, les données de diffraction n’étaient pas suffisantes pour déterminer la structure tridimensionnelle complète de la protéine, seuls les domaines transmembranaires ont été résolus. D'autre part, nous avons atteint l'objectif de l'extraction, la purification et la stabilisation de ce transporteur à l'aide des détergents à base de calix [4] arène. Nous avons également montré que ces détergents promeuvent et améliorent la cinétique de cristallisation de BmrA, une étape que nous sommes en train d’optimiser, pour obtenir des cristaux de meilleure résolution, pour résoudre la structure 3D de BmrA qui sera utilisé pour concevoir des inhibiteurs adaptésDue to their preponderance in the resistance to chemotherapies, the MDR ABC transporters have drawn the attention of the scientific community. Our project aimed at finding conditions in which ABC transporters are active in solution to lead the crystallization of these proteins in an active conformation. In this purpose, we conceived and developed a new class of detergents, based on calix[4]arene ring, that stabilize these proteins. In order to solve the 3D-structure to atomic resolution of bacterial ABC transporter “BmrA” responsible for antibiotic resistance, we used a classical approach with commercial detergents in addition to the innovative ones. We have crystallized the protein in presence of Foscholine 12 with a diffraction resolution up to 5 Å. The data was incomplete; solving partially the structure of the transmembrane domains. On the other hand, we have reached the objective of extraction, purification and stabilization of this transporter by using calix[4]arene-based detergents. We have also shown that these detergents promote and enhance the kinetics of crystallization of BmrA, a step that we are improving, to get crystals of better resolution, for resolving the BmrA 3D-structure which will be used to design adapted inhibitor

    Prevalence of Antibiotic-Resistant Bacteria in Domestic Water Storage Tanks in Sidon, Lebanon

    No full text
    Safe, accessible, and good water quality are essential characteristics for reducing various waterborne diseases. Since domestic water is the water most consumed by Lebanese people, cleaning household water tanks is important to prevent their exposure to pathogenic microorganisms. Generally, all the stages of the value chain of the Lebanese water sector are still imperfect. Thus, the domestic water should be regularly tested, especially in the impoverished landmarks where water quality is the worst. The aim of this study is to evaluate the physicochemical parameters and microbiological quality of the water in the storage tanks of homes in Sidon, Lebanon. Fifty water samples were collected aseptically from domestic water storage tanks. The microbiological assessment was performed using basic plating techniques. Identification of isolated bacteria was performed using MALDI-TOF-MS. Physicochemical parameters were assessed using titration, pH, and conductivity measurements. Antibiotic-susceptibility testing was performed using antibiotic disks. Screening for virulence genes in bacteria was carried out via polymerase chain reaction (PCR). Most of the physicochemical parameters were within the permissible limits of the World Health Organization (WHO) for drinking water. The heterotrophic plate count (HPC) varied between the water samples. The total coliform, fecal coliform, and Escherichia coli (E. coli) contaminate was 54%, 20%, and 16% in each of the samples, respectively. Other bacteria isolated from household water included intestinal Enterococcus faecalis (E. faecalis) (68%), Staphylococcus aureus (S. aureus) (68%), and Pseudomonas aeruginosa (P. aeruginosa) (22%). Other predominant isolates recovered from the samples were also identified. The bacterial isolates showed a prevalence of resistance and intermediate resistance against the tested antibiotic agents. Multi-resistant Staphylococcus aureus (MRSA) was detected in 21% of the collected S. aureus, using cefoxitin agent and mecA gene detection. A prevalence of virulence genes in both P. aeruginosa and S. aureus was also noticed. Our data show that Sidon domestic water is not suitable for either drinking or home applications

    Siglecs in Brain Function and Neurological Disorders

    No full text
    Siglecs (Sialic acid-binding immunoglobulin-type lectins) are a I-type lectin that typically binds sialic acid. Siglecs are predominantly expressed in immune cells and generate activating or inhibitory signals. They are also shown to be expressed on the surface of cells in the nervous system and have been shown to play central roles in neuroinflammation. There has been a plethora of reviews outlining the studies pertaining to Siglecs in immune cells. However, this review aims to compile the articles on the role of Siglecs in brain function and neurological disorders. In humans, the most abundant Siglecs are CD33 (Siglec-3), Siglec-4 (myelin-associated glycoprotein/MAG), and Siglec-11, Whereas in mice the most abundant are Siglec-1 (sialoadhesin), Siglec-2 (CD22), Siglec-E, Siglec-F, and Siglec-H. This review is divided into three parts. Firstly, we discuss the general biological aspects of Siglecs that are expressed in nervous tissue. Secondly, we discuss about the role of Siglecs in brain function and molecular mechanism for their function. Finally, we collate the available information on Siglecs and neurological disorders. It is intriguing to study this family of proteins in neurological disorders because they carry immunoinhibitory and immunoactivating motifs that can be vital in neuroinflammation
    corecore