29 research outputs found

    On the controlled electrochemical preparation of R4N+ graphite intercalation compounds and their host structural deformation effects

    Get PDF
    AbstractWe present electrochemical studies of tetraalkylammonium (R4N+) reduction chemistry at Highly Orientated Pyrolytic Graphite (HOPG) and glassy carbon (GC) electrodes. We show that by electrochemically controlled intercalation and formation of a graphite intercalation complex (GIC) into layered HOPG, the irreversible reduction of the tetraalkylammonium cation can be prevented and subsequent de-intercalation of the GIC via the use of potentiostatic control is achievable. R4N+ cations with varying alkyl chain lengths (methyl, ethyl and butyl) have been shown to exhibit excellent charge recovery effects during charge/discharge studies. Finally the effects of electrode expansion on the degree of recovered charge have been investigated and the observed effects of R4N+ intercalation on the graphite cathode have been probed by scanning electron microscopy (SEM) and X-ray diffraction (XRD)

    Electron transfer kinetics on natural crystals of MoS2 and graphite

    Get PDF
    Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)63−/4−, Ru(NH3)63+/2+ and IrCl62−/3− are determined using voltammetry in a micro-droplet cell. The kinetics on both materials are studied as a function of surface defectiveness, surface ageing, applied potential and illumination. We find that the basal planes of both natural MoS2 and graphite show significant electroactivity, but a large decrease in electron transfer kinetics is observed on atmosphere-aged surfaces in comparison to in situ freshly cleaved surfaces of both materials. This is attributed to surface oxidation and adsorption of airborne contaminants at the surface exposed to an ambient environment. In contrast to semimetallic graphite, the electrode kinetics on semiconducting MoS2 are strongly dependent on the surface illumination and applied potential. Furthermore, while visibly present defects/cracks do not significantly affect the response of graphite, the kinetics on MoS2 systematically accelerate with small increase in disorder. These findings have direct implications for use of MoS2 and graphene/graphite as electrode materials in electrochemistry-related applications
    corecore