421 research outputs found
Exact-Diagonalization Studies of Inelastic Light Scattering in Self-Assembled Quantum Dots
We report exact diagonalization studies of inelastic light scattering in
few-electron quantum dots under the strong confinement regime characteristic of
self-assembled dots. We apply the orthodox (second-order) theory for scattering
due to electronic excitations, leaving for the future the consideration of
higher-order effects in the formalism (phonons, for example), which seem
relevant in the theoretical description of available experiments. Our numerical
results stress the dominance of monopole peaks in Raman spectra and the
breakdown of selection rules in open-shell dots. The dependence of these
spectra on the number of electrons in the dot and the incident photon energy is
explicitly shown. Qualitative comparisons are made with recent experimental
results.Comment: 11 pages, 11 figure
Direct Observation of the Electron Spin Relaxation Induced by Nuclei in Quantum Dots
We have studied the electron spin relaxation in semiconductor InAs/GaAs quantum dots by time-resolved optical spectroscopy. The average spin polarization of the electrons in an ensemble of p-doped quantum dots decays down to 1/3 of its initial value with a characteristic time TDelta[approximate]500 ps, which is attributed to the hyperfine interaction with randomly oriented nuclear spins. We show that this efficient electron spin relaxation mechanism can be suppressed by an external magnetic field as small as 100 mT
Free induction signal from biexcitons and bound excitons
A theory of the free induction signal from biexcitons and bound excitons is
presented. The simultaneous existence of the exciton continuum and a bound
state is shown to result in a new type of time dependence of the free
induction. The optically detected signal increases in time and oscillates with
increasing amplitude until damped by radiative or dephasing processes.
Radiative decay is anomalously fast and can result in strong picosecond pulses.
The expanding area of a coherent exciton polarization (inflating antenna),
produced by the exciting pulse, is the underlying physical mechanism. The
developed formalism can be applied to different biexciton transients.Comment: RevTeX, 20 p. + 2 ps fig. To appear in Phys. Rev. B1
Search for the pentaquark via the reaction at 1.92 GeV/
The pentaquark baryon was searched for via the
reaction in a missing-mass resolution of 1.4 MeV/(FWHM) at J-PARC.
meson beams were incident on the liquid hydrogen target with the beam momentum
of 1.92 GeV/. No peak structure corresponding to the mass was
observed. The upper limit of the production cross section averaged over the
scattering angle of 2 to 15 in the laboratory frame was
obtained to be 0.26 b/sr in the mass region of 1.511.55 GeV/.The
upper limit of the decay width using the effective Lagrangian
approach was obtained to be 0.72 MeV/ and 3.1 MeV/ for
and , respectively.Comment: 5 pages, 3 figures, 1 tabl
Method to Assemble Genomic DNA Fragments or Genes on Human Artificial Chromosome with Regulated Kinetochore Using a Multi-Integrase System
The
production of cells capable of carrying multiple transgenes
to Mb-size genomic loci has multiple applications in biomedicine and
biotechnology. In order to achieve this goal, three key steps are
required: (i) cloning of large genomic segments; (ii) insertion of
multiple DNA blocks at a precise location and (iii) the capability
to eliminate the assembled region from cells. In this study, we designed
the iterative integration system (IIS) that utilizes recombinases
Cre, ΦC31 and ΦBT1, and combined it with a human artificial
chromosome (HAC) possessing a regulated kinetochore (alphoid<sup>tetO</sup>-HAC). We have demonstrated that the IIS-alphoid<sup>tetO</sup>-HAC
system is a valuable genetic tool by reassembling a functional gene
from multiple segments on the HAC. IIS-alphoid<sup>tetO</sup>-HAC
has several notable advantages over other artificial chromosome-based
systems. This includes the potential to assemble an unlimited number
of genomic DNA segments; a DNA assembly process that leaves only a
small insertion (<60 bp) scar between adjacent DNA, allowing genes
reassembled from segments to be spliced correctly; a marker exchange
system that also changes cell color, and counter-selection markers
at each DNA insertion step, simplifying selection of correct clones;
and presence of an error proofing mechanism to remove cells with misincorporated
DNA segments, which improves the integrity of assembly. In addition,
the IIS-alphoid<sup>tetO</sup>-HAC carrying a locus of interest is
removable, offering the unique possibility to revert the cell line
to its pretransformed state and compare the phenotypes of human cells
with and without a functional copy of a gene(s). Thus, IIS-alphoid<sup>tetO</sup>-HAC allows investigation of complex biomedical pathways,
gene(s) regulation, and has the potential to engineer synthetic chromosomes
with a predetermined set of genes
Mechanistic studies of the modulation of cleavage activity of topoisomerase I by DNA adducts of mono- and bi-functional PtII complexes
Using electrophoresis and replication mapping, we show that the presence of DNA adducts of bifunctional antitumor cisplatin or monodentate [PtCl(dien)]Cl (dien = diethylenetriamine) in the substrate DNA inhibits eukaryotic topoisomerase 1 (top1) action, the adducts of cisplatin being more effective. The presence of camptothecin in the samples of platinated DNA markedly enhances effects of Pt–DNA adducts on top1 activity. Interestingly, the effects of Pt–DNA adducts on the catalytic activity of top1 in the presence of camptothecin differ depending on the sequence context. A multiple metallation of the short nucleotide sequences on the scissile strand, immediately downstream of the cleavage site impedes the cleavage by top1. On the other hand, DNA cleavage by top1 at some cleavage sites which were not platinated in their close proximity is notably enhanced as a consequence of global platination of DNA. We suggest that this enhancement of DNA cleavage by top1 may consist in its inability to bind to other cleavage sites platinated in their close neighborhood; thus, more molecules of top1 may become available for cleavage at the sites where top1 normally cleaves and where platination does not interfere
siRNAs Induce Efficient RNAi Response in Bombyx mori Embryos
Short interference RNA (siRNA) is widely used in mammalian cells. In insects, however, reports concerning the suitablility of siRNA in vivo is very limited compared with that of long dsRNA, which is thought to be more effective. There is insufficient information on the essential rules of siRNA design in insects, as very few siRNAs have been tested in this context. To establish an effective method of gene silencing using siRNA in vivo in insects, we determined the effects of siRNA on seven target genes. We designed siRNAs according to a new guideline and injected them into eggs of Bombyx mori. At the mRNA level, the expression of most of these genes was successfully silenced, down to less than half the constitutive level, which in some cases led to the development of distinctive phenotypes. In addition, we observed stronger effect of siRNA both on the mRNA level and the phenotype than that of long dsRNA under comparable conditions. These results indicate that direct injection of siRNA is an effective reverse-genetics tool for the analysis of embryogenesis in vivo in insects
Circadian Cycles of Gene Expression in the Coral, Acropora millepora
Background: Circadian rhythms regulate many physiological, behavioral and reproductive processes. These rhythms are often controlled by light, and daily cycles of solar illumination entrain many clock regulated processes. In scleractinian corals a number of different processes and behaviors are associated with specific periods of solar illumination or nonillumination—for example, skeletal deposition, feeding and both brooding and broadcast spawning. Methodology/Principal Findings: We have undertaken an analysis of diurnal expression of the whole transcriptome and more focused studies on a number of candidate circadian genes in the coral Acropora millepora using deep RNA sequencing and quantitative PCR. Many examples of diurnal cycles of RNA abundance were identified, some of which are light responsive and damped quickly under constant darkness, for example, cryptochrome 1 and timeless, but others that continue to cycle in a robust manner when kept in constant darkness, for example, clock, cryptochrome 2, cycle and eyes absent, indicating that their transcription is regulated by an endogenous clock entrained to the light-dark cycle. Many other biological processes that varied between day and night were also identified by a clustering analysis of gene ontology annotations. Conclusions/Significance: Corals exhibit diurnal patterns of gene expression that may participate in the regulation of circadian biological processes. Rhythmic cycles of gene expression occur under constant darkness in both populations o
Localization-enhanced biexciton binding in semiconductors
The influence of excitonic localization on the binding energy of biexcitons is investigated for quasi-three-dimensional and quasi-two-dimensional AlxGa1−xAs structures. An increase of the biexciton binding energy is observed for localization energies comparable to or larger than the free biexciton binding energy. A simple analytical model for localization in the weak confinement regime ascribes the increase to a quenching of the additional kinetic energy of the exciton-exciton motion in the biexciton
- …